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Abstract

This paper demonstrates a new approach for assessing the disclosure risk of analytical outputs from
trusted research environments. The method involves embedding the information contained in the
output into synthetic data. The embedding is achieved by turning the analytical output into an objective
function in an evolutionary algorithm. Once the synthetic data have been produced the data can be
assessed using standard disclosure risk metrics for microdata — in this case the correct attribution
probability (CAP) measure. The results are promising but further work is needed to understand the
capacity of the approach to analyse outputs at the speed required by TRE environments.

1. Introduction

The number of Trusted Research Environments (TREs) and other forms of safe setting
has grown substantially in the face of an increasingly rich external data environment
[1] and increasingly sophisticated machine learning techniques [2] both of which
opens a larger range of potential attack vectors. But these same attack vectors present
a secondary problem. The rationale for storing data in a safe setting is that the data
themselves are not safe to release openly. But most research aims to publish analytical
outputs and those outputs will — by definition — be informative about the data that has
been analysed. Since the underlying data are not safe to release, we cannot assume a
priori that the outputs themselves are safe and the risk that releasing those outputs
presents must be assessed.

Systematically assessing the disclosure risk of analytical outputs can be a problem.
Most commonly this relies on a set of heuristic rules (Rules-Based Output Statistical
Disclosure Control - OSDC) and the expertise of human output checkers, and indeed
the researcher whose output is being assessed (principles based OSDC); [3]. These
have been developed through developing practice [4] and it is reasonable to say that
the approach has been effective to date as we there have been no known attacks on
statistical output.

However, laurels should not be rested on — the data environment is becoming
increasingly complicated [1, 5] and potential adversaries have increasingly
sophisticated tools at their disposal and both the principled and rules-based
approaches have weaknesses in assessing complex and multiple outputs (and the
possibility of outputs from different researchers is not checked). The principles-based
approach suffers from a lack of consistency.

Some attempts have been made recently to automate the output checking process. [6,
7] have developed software to semi automate the output checking process with a
resulting improvement to consistency. However, the issue of multiple outputs
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remains. Fundamentally, the approach is based on a set of heuristic rules which have
never been formally validated and are not directly related to underlying risk measures.

Our research proposes using the analytical output (for example, a set of model
coefficients and summary statistics) as the objectives for an Evolutionary Algorithm
(EA) synthesiser. That is, the synthetic data is produced without directly interrogating
the original (safeguarded) data, using only the output. This will create a synthetic
dataset that has the same metadata structure as the original data but with the only data
structure captured in the synthesis as that represented in the analytical output. In
previous work [8,9] we have examined how this methodology can be used to develop
teaching datasets which could also then be utilised by researchers prior to applying to
analyse the original data within the TRE. The point being that since the analytical
output has been cleared for release the marginal disclosure risk of the synthetic data
created from that output ought to be zero.

In the current paper we flip this rationale on its head and posit that we might use the
method to more formally assess the risk of the outputs themselves. The key point is by
producing microdata that captures the information in the output we can then employ
disclosure risk metrics developed for use with synthetic microdata to more
systematically assess the risk of that output. An additional potential benefit is that
there is no algorithmic restriction on the number of outputs that can be set as
objectives and therefore this can — in principle - be used to assess the cumulative risk
of multiple outputs.

The remainder of this paper is structured as follows. In section 2 we provide a general
description of the two methodological tools we employ here: the use of evolutionary
algorithms for data synthesis and the CAP measure for assessing attribution risk (in
synthetic data). Section 3 describes the case study experiment design that we have
conducted to demonstrate how the approach would work in practice. Section 4 give
the results of those experiments and section 5 discussed the implications of the study.

2. Background

Using evolutionary algorithms for Data Synthesis

Data synthesis for structured data [10,11] generates an artificial dataset that has the
same structure and statistical properties as a real data set (usually referred to as the
original data) but (in the case of full synthesis) not containing any of the records of
the original data. Synthetic data may be used where access to the original data is not
possible or restricted due to privacy constraints, or to augment (add more records to)
existing datasets. In general, synthetic data is usually generated by modelling of the
original dataset, however it is possible to generate synthetic data without this, using
analytical output from the original dataset instead and in previous work [9,13] we have
demonstrated how it is possible to use evolutionary algorithms to do this effectively
and it is this approach that we utilise here.
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Genetic Algorithms (GAs) [13,14] perform iterative optimisation and are a type of EA
that use biologically inspired operators. There are three main operators: selection,
crossover, and mutation. Broadly speaking, an initial population of candidate
solutions is specified (in this case, a candidate solution is a synthetic dataset), and the
fitness of the candidates is calculated. The parental selection operator is used to select
candidates (parents) to reproduce for a new population, with fitter candidates more
likely to be selected. A crossover operator combines some of the parents (there are a
variety of methods for this) to produce new candidate solutions (children). A mutation
operator then mutates some of the candidates (i.e., randomly changes some of the
features). The children or a combination of children and parents form the population
of the next generation (this step is called environmental selection). This process is
repeated multiple times (generations), using the fitness to guide it, with ideally fitter
solutions produced with each generation. Commonly, the process terminates when a
specified number of generations has been produced, or a particular fitness level has
been reached. GAs are flexible in that there are many parameters that can be changed
or set, and the fitness function can be designed for the specific purpose. Initial Work
by Chen et al. [15,16] has shown the feasibility of using GAs to generate synthetic
microdata. Elliot et al. [12] used an EA to generate synthetic teaching datasets without
any access to the original dataset, using only analytical output from the original dataset
as an objective within the EA.

Measuring disclosure risk in synthetic data

In theory synthetic data should have low disclosure risk; the risk of re-identification is
not meaningful since the synthesis process breaks the link between the data subjects
and the data (i.e., synthetic data does not contain “real” records), however there is still
a risk of attribution. Attribution occurs when some attribute can be associated with a
data subject (such as learning from a synthetic dataset that all men aged over 85 in a
particular geographical area have cancer).

The CAP methodology can be used to measure the risk of synthetic data. The
Differential Correct Attribution Probability (DCAP), introduced by Elliot [17],
measures the attribution risk as the probability of making a correct attribution (on a
target variable), given knowledge of a set of key variables. An extension to this is the
Targeted Correct Attribution Probability (TCAP) [18] which considers the case where
an adversary will focus only on records in equivalence classes with an 1-diversity on
the target variable which is no lower than the value of the parameter Tau (which is
usually set to 1). The TCAP metric is therefore the probability that those matched
records yield a correct value for the target variable (i.e. that the adversary is able to
make a correct attribution inference). A full description of the CAP methodology is
given in Appendix A.

3.Case study design

This study presented here simulates the situation where model output is requested by
the user of a TRE. Specifically, we will be assessing a logistic regression model of a
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subset of the Samples of Anonymised Records from the 1991 UK census (SARS). to
drive the creation of a synthetic dataset using an Evolutionary Algorithm (EA). The
resulting synthetic dataset will have the same metadata structure as the original data
but with the only data structure maintained in the synthesis being that represented in
the regression model. That is, the synthetic dataset should be able to recreate the
analytical output (the coefficients of a logistic regression model).

Data

The 1991 UK SARS Census dataset was downloaded from the UK data archive and then
subset on seven areas in the West Midlands region (using the AREAP variable) and
using seven explanatory variables (AREAP, AGE, ETHGROUP, LTILL, MSTATUS,
SEX, TENURE). TENURE (housing tenure) was used as the response variable; having
been converted to a binary variable (representing whether an individual lives in an
owned or rented house). 940 records with missing values for TENURE were removed
leaving 50357 records. See Appendix B for a data dictionary.

The data were randomly split into training and holdout disjoint subsamples using
simple random sampling.

Experiments were performed on various splits but here we report on just three.

1. Synthesising whole dataset

2. 2-folds (one training dataset which is a ~50% sample containing 25178
records and one holdout dataset also a ~50% sample containing 25179
records)

3. A two-fold-fold experiment where the one of the folds was itself split into
two.

The rationale for this series of experiments was as follows. The holdout dataset serves
as a baseline. If the inferences that can be made about individuals in the original
dataset (from the synthetic data/output) are no better than those than inferences made
from the holdout dataset, then any inferences can be determined as normal statistical
outcomes rather than statistical disclosures. The problem with this insight is that the
TRE owner will have no holdout dataset to make this comparison. But we can envisage
that they could split the data in two and then run the analysis on one of the halves and
use the other as a hold out (and then vice versa). This in principle enables them to
assess the risk of an output of that sort using the original-holdout comparison
averaged across the two halves. The secondary issue with that approach is that it
assumes that the relationship between the half dataset original and half dataset
holdout is the same (in terms of risk) as that between the full dataset and an
(imaginary) full holdout. By splitting the data again in experiment three we can
examine whether the relationship holds across different sizes of data (at least for this
case study).

Henceforth, we refer to the training dataset as the original dataset for the rest of this
document. The EA was run using the regression run on the original dataset (the hold-
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out dataset was not involved and used only to provide a comparison of the results and
a baseline for the TCAP score).

The analytical output of the original dataset was a binary logistic regression performed
on the TENURE variable, with all remaining variables used as explanatory variables.
The variables were pre-processed by one-hot encoding the multi-categorical variables.
See Appendix C for the reference categories.

EA strategy

The EA was initialised using a population (size = 32) of synthetic datasets (candidates)
derived from the uniform distribution of the original (training) data. The fitness of
these datasets (candidates) was measured by performing the same logistic regression
(using the same data pre-processing steps as performed on the original data) and
comparing the resulting regression coefficients to the original coefficients.2 The fitness
was calculated at each generation. Fitness was calculated using the mean squared error
(MSE) between synthetic and original coefficients.3 The fitness score should tend
towards zero, i.e., a lower fitness score is optimal (a score of zero would indicate that
the logistic regression model has been recreated identically).

Preliminary exploratory experiments determined that crossover with stepped
mutation produces good solutions efficiently. (Stepped mutation is where the
mutation rate is divided by three every 250 generations). Parameter settings for the
EA are detailed in Table 1.

Parameter Value ‘ Detalils

Number of generations 2000

Initial population .

distribution Uit

Population size 32

Mutation rate S Startlng at 0.005, divide by 3 every 250
generations
Probability of whether to crossover is 0.8

Crossover On o .
Crossover probability for each record is 0.1

Table 1: Parameter settings for each run of the EA

For each run the EA used information from the training dataset (regression
coefficients, table values and distribution information) and did not access the holdout
in any way.

For the whole dataset experiment 10 runs of the EA were performed, as there was no
holdout dataset. For the 2-fold split experiments the holdout was each of the folds in
turn (with the other fold forming the original dataset) and a run of the EA was

2The EA is programmed in Python and the package used for regression was statsmodels, details here:
https://www.statsmodels.org/

3See Taub et al 2020 and Little et al 2025 for discussion of different utility metrics that might be used to
drive the synthesiser. Where a table is the analytical output, the synthetic and original tables are
compared cell-wise.
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performed for each combination of folds, therefore there were two runs. Each of the
runs of the EA were randomly initialised, this means that each time the process was
started (initial synthetic datasets were generated) a different random seed was used,
to ensure that the starting place for each run was different.

4.Results

Experiment 1: Synthesising whole original dataset

There was no holdout dataset, and the regression and univariate distributions were
gathered from the whole original dataset. Ten randomly initialised runs were used.
The regression coefficients for the original and the mean of ten runs of the EA are
shown in Table 2.

Regression Coefficients Absolute
Feature Original Synthetic difference ‘
Constant 0.2498 0.2515 0.0017
AGE 0.0012 0.0013 0.0002
AREAP_58 -0.3754 -0.3753 0.0001
AREAP_59 -0.3389 -0.3389 0.0000
AREAP_60 0.3404 0.3405 0.0001
AREAP_61 -0.7305 -0.7302 0.0003
AREAP_62 0.0805 0.0807 0.0002
AREAP_63 0.1464 0.1467 0.0003
ETHGROUP_10 0.7427 0.7429 0.0002
ETHGROUP_ 2 0.5044 0.5045 0.0000
ETHGROUP_3 1.0247 1.0248 0.0001
ETHGROUP_4 0.9189 0.9191 0.0002
ETHGROUP_5 -1.6371 -1.6368 0.0003
ETHGROUP_6 -0.7816 -0.7815 0.0001
ETHGROUP_7 0.0191 0.0193 0.0003
ETHGROUP_S8 0.5156 0.5160 0.0004
ETHGROUP_9 0.3519 0.3520 0.0001
LTILL_2 -0.6933 -0.6913 0.0020
MSTATUS_2 -0.8421 -0.8413 0.0007
MSTATUS_3 -0.3890 -0.3887 0.0003
MSTATUS_4 0.3676 0.3676 0.0001
MSTATUS_5 -0.0176 -0.0174 0.0002
SEX_2 0.0709 0.0723 0.0014
MAE | 0.0004

Table 2: Absolute differences between the regression coefficients for the original
and the mean of ten runs of the EA

Below plots the MSE fitness (mean squared error of the logistic regression coefficients)
for the EA for each of the ten runs:
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Synthesising whole dataset. MSE fitness (MSE for regression coefficients)
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0.25-

0 500 1000 1500 2000
Number of generations

Figure 1: the MSE fitness (mean squared error of the logistic regression coefficients)
for the EA for each of the ten runs.

The mean TCAP score across the ten runs was 0.4962 (using TENURE as target and
all combinations of 3-6 keys) and 0.6317 (when using a single calculation of TENURE
as target and all six remaining variables as the keys).

Experiment 2: a two-fold split

The data was split into 2 folds with a training dataset and a holdout. This was rotated
so that each fold was a holdout once. There were therefore two runs of the EA. The
MSE fitness (error of the regression coefficients) of the EA is plotted below for each of
the two runs:

2-fold datasets. MSE fitness (error of logistic regression coefficients)

1.00-

run
7] 1
050- [—
=

0 500 1000 1500 2000
Number of generations

Figure 2: the MSE fitness (mean squared error of the logistic regression coefficients)
for the EA for each of the two runs in the twofold split.
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The regression coefficients for the original and the synthetic dataset produced by fold

1 are shown in Table 3. Similar figures were obtained for fold 2.

Feature

Regression

Coefficients
Absolute

difference

Original Synthetic

Constant 0.2677 0.2707 0.0030
AGE 0.0016 0.0009 0.0007
AREAP_58 -0.3797 -0.3794 0.0003
AREAP_59 -0.3700 -0.3697 0.0003
AREAP_60 0.2810 0.2816 0.0006
AREAP_ 61 -0.7700 -0.7701 0.0001
AREAP_62 0.0248 0.0245 0.0003
AREAP_63 0.1416 0.1414 0.0002
ETHGROUP_10 0.7738 0.7742 0.0004
ETHGROUP_2 0.5627 0.5628 0.0001
ETHGROUP_3 1.2134 1.2140 0.0006
ETHGROUP_4 0.8100 0.8107 0.0007
ETHGROUP_5 -1.6291 -1.6293 0.0002
ETHGROUP_6 -0.8158 -0.8149 0.0009
ETHGROUP_7 0.1094 0.1104 0.0010
ETHGROUP_S8 0.2285 0.2286 0.0001
ETHGROUP_9 0.5768 0.5760 0.0008
LTILL_2 -0.6865 -0.6840 0.0025
MSTATUS_2 -0.8830 -0.8824 0.0006
MSTATUS_3 -0.3673 -0.3672 0.0001
MSTATUS 4 0.4125 0.4130 0.0005
MSTATUS_ 5 0.0214 0.0219 0.0005
SEX_2 0.0462 0.0482 0.0020
MAE 0.0007

Table 3: Absolute differences between the regression coefficients for the original and
the synthetic for 2-fold experiment.
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The regression coefficients for the original and the synthetic dataset produced by fold
1 are shown in Table 4.

Regression
Coefficients Absolute
.. . difference

Original | Synthetic
Constant 0.3346 0.3347 0.0001
AGE 0.0003 0.0011 0.0008
AREAP_58 -0.4424 -0.4423 0.0001
AREAP_59 -0.3913 -0.3913 0.0000
AREAP_60 0.3211 0.3213 0.0002
AREAP_61 -0.7996 -0.7996 0.0000
AREAP_62 0.0586 0.0583 0.0003
AREAP_63 0.1922 0.1922 0.0000
ETHGROUP_10 1.1453 1.1459 0.0006
ETHGROUP_2 0.6494 0.6489 0.0005
ETHGROUP_3 1.0444 1.0445 0.0001
ETHGROUP_4 0.6424 0.6423 0.0001
ETHGROUP_5 -1.7081 -1.7079 0.0002
ETHGROUP_6 -0.9576 -0.9576 0.0000
ETHGROUP_7 -0.1042 -0.1037 0.0005
ETHGROUP_S8 0.1549 0.1548 0.0001
ETHGROUP_9 1.1065 1.1061 0.0004
LTILL_2 -0.7122 -0.7119 0.0003
MSTATUS_ 2 -0.8900 -0.8901 0.0001
MSTATUS_3 -0.3501 -0.3503 0.0002
MSTATUS_4 0.4877 0.4881 0.0004
MSTATUS_5 0.0044 0.0044 0.0000
SEX_ 2 0.0591 0.0591 0.0000
MAE 0.0002

Table 4: Absolute differences between the regression coefficients for the original
and the synthetic, for 2-fold-fold experiment
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TCAP comparison for different fold combinations

Table 5 compares the TCAP of the synthetic to the original (TCAP O) and the synthetic
to the holdout (TCAP H), for each of the different folds. (The TCAP used is the one
calculated across all combinations of 3-6 keys).

TCAP O TCAP H Difference
Fold 1 0.523784 0.529662 -0.00588
Fold 2 0.489204 0.466176 0.023028
Mean 0.506494 0.497919 0.008575
Standard 0.0172 0.031 0.01
Deviation .01729 031743 014453
TCAP O ECAP Difference
Fold-Fold 1.1 0.504837 2'53571 -0.03088
Fold-Fold 1.2 0.52773 (1)'52212 0.005609
Mean 0.516284 8'52891 -0.01264
Standard 0.00679
deviation 0.011447 3 0.018244

Table 5: TCAP measurements for the 2-fold and 2-fold-fold experiments

The basic observation is that on average the results of the second level folds is very
similar to the first level fold — both have slightly negative marginal risk scores —
indicating the marginal risk is effectively zero and that the release of this output would
be safe.

5. Discussion

The forgoing experiments demonstrate how the method might be used by a trusted
research environment (TRE) to assess one type of statistical output. In this example,
our imaginary TRE — using this method - would be happy to release the regression
coefficients as the model is unable to discriminate between individuals who
contributed to the underlying dataset and those from another sample drawn from the
same population.

There are several issues which mean that at this stage we must be a cautious about
what we claim. Firstly, we have not in any sense proved that the method works. This
is a quantitative demonstration. As a minimum in future work would need to test this
on a wider range of data and outputs. Secondly the synthetic data that we have
produced although incredibly close to the original in the model coefficients it has
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produced is not identical. Arguably therefore not all the information in the model has
transferred to the synthetic data.

Figure 3 shows how TCAP evolves as the synthetic data evolve (moving from right to
left - i.e. decreasing MAE). On the left-hand side of this graph are datasets from the
final generations of the EA. Visually they are so close the vertical axis that their token
overlaps it but they are just to the right of the axis. We can extrapolate down to MAE=0
using the regression equation and if we do that then that has a negligible effect on the
risk. However, this would still be an extrapolation with all the perils that implies. We
do know that there is one dataset on the vertical axis — the original data - and that has
a TCAP score of 1.

Regression line for TCAP with non-matches as zero (6 keys) ~ MAE

1.00 -

0.75-

tcap_non_zero
o
[8)]
o

0.25- .l = . -!

0.00-

0.00 0.25 0.50 0.75 1.00
mae
Figure 3: Plot of regression line and points for TCAP (single calculation using 6 keys)
against MAE. This was performed using all points from all ten randomly initialised
runs. Correlation is -0.9374 Regression line: TCAP = 0.2279 — 0.0556 MAE

A key point here is the level of granularity that we are measuring the regression
coefficients at an arbitrary fine level of granularity (say 100 decimal places) even the
slightest change in the dataset (say of one value on one record) will be detectable in
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non-zero errors. So, if we want absolute zero to be our standard then there will be only
one dataset that meets that criteria — the original data. Given that we have virtually hit
the vertical axis (and this does happen with all examples we have tested) any
improvement in the fitness can only happen if the trajectory becomes vertical (again
assuming super-fine granularity).

On the surface it might seem that we have uncovered a new peril here — surely this
approach is open to an intruder as a form of reconstruction attack (see [21] for a
discussion about the efficacy of these). Specifically, if an adversary runs the algorithm
long enough and with enough precision on the objective function, will they find the
original data? Well yes and no. Yes, in principle it’s a form of reconstruction attack and
in essence it is the risk of this that we are measuring. But to be clear, even for very
modest sized datasets the size of the search space is unimaginably large, and the
algorithm is essentially blind. So, if an adversary had an infinite amount of time, they
might eventually find the original data using this method

ology, but for practical purposes with currently imaginable technology they could not.

The above applies for single outputs (that would be cleared by a TRE using traditional
output checking). For these, the method is a good way to measure disclosure risk but
a poor way for an adversary to attack those outputs. Or to put this another way if the
method itself says the output is safe then an adversary should not be able to use the
method to attack the data.

The situation is more complicated when we consider multiple outputs. To the extent
that these intersect but provide different information about the data we can imagine
that emergent disclosure of unreleased data structures as a potential risk. Our
exploratory work on this suggests that the algorithm becomes slower to converge as
the number of outputs increases and converges at a lower level of overall fitness so that
emergent structure may not be computable using this type of algorithm — this remains
to be explored.

Limitations and future work

One obvious limitation of the work presented is the extrapolation across different
sample sizes with the fold mechanism. We have experimented with various fold splits,
in particular shrinking the size of the holdout dataset. This has the advantage of
moving the training data closer to the distribution of the original data at the costs of
increasing measurement error in the hold out comparison. Realistically though this
will only be a significant problem where the size of the original dataset is small.
However, this needs extensive testing with datasets of different sizes and shapes and
different types of analytical output.

The work here has focused on categorical data — but data in other forms would need
to belooked at for wider adoption — particularly numerical data for which the mutation
operator might need to operate differently.

There is also a further question of whether synthesisers other than evolutionary
algorithms might be used. In principle any algorithm that can use analytical outputs



SDIG working paper #001. Elliot etal 2025

as an objective function for an optimiser could be used and this merits further
exploration.

Conclusion

This paper has presented a methodology for formalising the output checking in
Trusted Research Environments using an EA algorithm which uses the analytical
output in question as an objective function. We have demonstrated that the method
has promise — further work is needed to understand its capacities and limitations.
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Appendix
A. Measuring Disclosure Risk using TCAP

For the experiments within this paper, we refer to the attribute disclosure risk simply
as the disclosure risk, since this is the main form of disclosure risk associated with
synthetic data. [17] and [12] introduced a measure for the disclosure risk of synthetic
data called the Correct Attribution Probability (CAP) score. The disclosure risk is
calculated using an adaptation used by [19] called the Targeted Correct Attribution
Probability (TCAP). TCAP is based on a scenario whereby we assume that an intruder
has partial knowledge about a particular individual, and they wish to infer the value of
a sensitive variable (the target) for that individual. Specifically, we assume that they
know:

e theindividual is in the original dataset (that was used to generate the
synthetic data), and
e the individuals' values for some of the variables in the dataset (the keys).

These are strong assumptions, which has the benefit of then dominating most other
scenarios, with the one possible exception being a membership inference attack. The
TCAP metric is then the probability that those matched records yield a correct value
for the target variable (i.e. that the adversary makes a correct attribution inference).

The TCAP measure is used because it is easily computable across all methods (since it
simply compares matching records from the original and synthetic datasets), which is
a benefit over other measures such as that proposed by [20] which could be
computationally intractable for larger datasets and relies on the very strong
assumption that the intruder knows every case but one.

Following [18], TCAP is calculated as follows: define d, as the original data, and K, and
T, as vectors for the key and target information, respectively d, = {Ko, To}.

Likewise, $d_ {s}$ is the synthetic dataset ds = {K;, Ts}.

The Within Equivalence Class Attribution Probability (WEAP) score for the synthetic
dataset is then calculated. The WEAP score for the record indexed j is the empirical
probability of its target variables given its key variables:

n
i=1Tsi = Ts,j Ko, = Ky ;1)
WEAP;; = Pr(T;|K, ;) = R K]

1= ’ »

where the square brackets are Iverson brackets, n is the number of records, and K and
T are vectors for the key and target information, respectively. Using the WEAP score
the synthetic dataset is then reduced to records with a score of 1.

The TCAP for record j based on a corresponding original dataset d, is the same
empirical, conditional probability but derived from d,:

?:1[To,i = Ts,jJ Ko = Ks,j])

i
i=1[Ko,i = s,j]

TCAP,; = Pr(Ty;|Ks ;) =
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For any record in the synthetic dataset for which there is no corresponding record in
the original dataset with the same key variable values, the denominator in Equation 4
will be zero and the TCAP is therefore undefined.

TCAP has a value between 0 and 1; alow value would indicate that the synthetic dataset
carries little risk of disclosure, whereas a TCAP score close to 1 indicates a higher risk.
With the same rationale as with the baseline datasets, a baseline risk value can be
calculated (essentially the probability of the intruder being correct if they drew
randomly from the univariate distribution of the target variable).

For each census dataset, three targets and six key variables were used, and the
corresponding TCAP scores calculated for sets of 6 keys (based on the standard key
variable sets produced by [5]. The overall mean of the TCAP scores was then calculated
as the overall disclosure risk score. Where possible, the selected key/target variables
were consistent across each country.
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B. UK 1991 SARS Census data dictionary
Variable Description Label Values
name
AGE age

AREAP Individual SAR area Birmingham

a1 O
0

Coventry
Dudley
Sandwell
Solihull

Walsall
Wolverhampton
White

Black Caribbean
Black African
Black other
Indian

N O
o O

AN N O
w N =

ETHGROUP Ethnic group

Pakistani
Bangladeshi
Chinese
Other-Asian
Other-other
Yes

O© 0o N~ WO N -

[u—y
o

LTILL Limiting long-term
illness

[u—y

No

Single
Married
Remarried

MSTATUS Marital status

Divorced
Widowed
Male
Female

SEX Sex

oN = Ok~ WO N = DN

TENURE Tenure of household
space (derived into a
binary variable)

Own house

1 Rent house
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C. Regression reference categories

Variable

AREAP
ETHGROUP
LTILL
MSTATUS
SEX

Reference
category

57

[ e

Label

Birmingham
White

Yes

Single

Male
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