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Abstract 
This paper demonstrates a new approach for assessing the disclosure risk of analytical outputs from 

trusted research environments. The method involves embedding the information contained in the 

output into synthetic data. The embedding is achieved by turning the analytical output into an objective 

function in an evolutionary algorithm. Once the synthetic data have been produced the data can be 

assessed using standard disclosure risk metrics for microdata – in this case the correct attribution 

probability (CAP) measure. The results are promising but further work is needed to understand the 

capacity of the approach to analyse outputs at the speed required by TRE environments. 

1. Introduction 
The number of Trusted Research Environments (TREs) and other forms of safe setting 

has grown substantially in the face of an increasingly rich external data environment 

[1] and increasingly sophisticated machine learning techniques [2] both of which 

opens a larger range of potential attack vectors. But these same attack vectors present 

a secondary problem. The rationale for storing data in a safe setting is that the data 

themselves are not safe to release openly. But most research aims to publish analytical 

outputs and those outputs will – by definition – be informative about the data that has 

been analysed. Since the underlying data are not safe to release, we cannot assume a 

priori that the outputs themselves are safe and the risk that releasing those outputs 

presents must be assessed. 

Systematically assessing the disclosure risk of analytical outputs can be a problem. 

Most commonly this relies on a set of heuristic rules (Rules-Based Output Statistical 

Disclosure Control - OSDC) and the expertise of human output checkers, and indeed 

the researcher whose output is being assessed (principles based OSDC); [3]. These 

have been developed through developing practice [4] and it is reasonable to say that 

the approach has been effective to date as we there have been no known attacks on 

statistical output.  

However, laurels should not be rested on – the data environment is becoming 

increasingly complicated [1, 5] and potential adversaries have increasingly 

sophisticated tools at their disposal and both the principled and rules-based 

approaches have weaknesses in assessing complex and multiple outputs (and the 

possibility of outputs from different researchers is not checked). The principles-based 

approach suffers from a lack of consistency. 

Some attempts have been made recently to automate the output checking process. [6, 

7] have developed software to semi automate the output checking process with a 

resulting improvement to consistency. However, the issue of multiple outputs 
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remains. Fundamentally, the approach is based on a set of heuristic rules which have 

never been formally validated and are not directly related to underlying risk measures. 

Our research proposes using the analytical output (for example, a set of model 

coefficients and summary statistics) as the objectives for an Evolutionary Algorithm 

(EA) synthesiser. That is, the synthetic data is produced without directly interrogating 

the original (safeguarded) data, using only the output. This will create a synthetic 

dataset that has the same metadata structure as the original data but with the only data 

structure captured in the synthesis as that represented in the analytical output. In 

previous work [8,9] we have examined how this methodology can be used to develop 

teaching datasets which could also then be utilised by researchers prior to applying to 

analyse the original data within the TRE. The point being that since the analytical 

output has been cleared for release the marginal disclosure risk of the synthetic data 

created from that output ought to be zero.  

In the current paper we flip this rationale on its head and posit that we might use the 

method to more formally assess the risk of the outputs themselves. The key point is by 

producing microdata that captures the information in the output we can then employ 

disclosure risk metrics developed for use with synthetic microdata to more 

systematically assess the risk of that output. An additional potential benefit is that 

there is no algorithmic restriction on the number of outputs that can be set as 

objectives and therefore this can – in principle - be used to assess the cumulative risk 

of multiple outputs. 

The remainder of this paper is structured as follows. In section 2 we provide a general 

description of the two methodological tools we employ here: the use of evolutionary 

algorithms for data synthesis and the CAP measure for assessing attribution risk (in 

synthetic data). Section 3 describes the case study experiment design that we have 

conducted to demonstrate how the approach would work in practice. Section 4 give 

the results of those experiments and section 5 discussed the implications of the study. 

2. Background 

Using evolutionary algorithms for Data Synthesis 

Data synthesis for structured data [10,11] generates an artificial dataset that has the 

same structure and statistical properties as a real data set (usually referred to as the 

original data) but (in the case of full synthesis) not containing any of the records of 

the original data. Synthetic data may be used where access to the original data is not 

possible or restricted due to privacy constraints, or to augment (add more records to) 

existing datasets. In general, synthetic data is usually generated by modelling of the 

original dataset, however it is possible to generate synthetic data without this, using 

analytical output from the original dataset instead and in previous work [9,13] we have 

demonstrated how it is possible to use evolutionary algorithms to do this effectively 

and it is this approach that we utilise here. 
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Genetic Algorithms (GAs) [13,14] perform iterative optimisation and are a type of EA 

that use biologically inspired operators. There are three main operators: selection, 

crossover, and mutation. Broadly speaking, an initial population of candidate 

solutions is specified (in this case, a candidate solution is a synthetic dataset), and the 

fitness of the candidates is calculated. The parental selection operator is used to select 

candidates (parents) to reproduce for a new population, with fitter candidates more 

likely to be selected. A crossover operator combines some of the parents (there are a 

variety of methods for this) to produce new candidate solutions (children). A mutation 

operator then mutates some of the candidates (i.e., randomly changes some of the 

features). The children or a combination of children and parents form the population 

of the next generation (this step is called environmental selection). This process is 

repeated multiple times (generations), using the fitness to guide it, with ideally fitter 

solutions produced with each generation. Commonly, the process terminates when a 

specified number of generations has been produced, or a particular fitness level has 

been reached. GAs are flexible in that there are many parameters that can be changed 

or set, and the fitness function can be designed for the specific purpose. Initial Work 

by Chen et al. [15,16] has shown the feasibility of using GAs to generate synthetic 

microdata. Elliot et al. [12] used an EA to generate synthetic teaching datasets without 

any access to the original dataset, using only analytical output from the original dataset 

as an objective within the EA. 

Measuring disclosure risk in synthetic data 

In theory synthetic data should have low disclosure risk; the risk of re-identification is 

not meaningful since the synthesis process breaks the link between the data subjects 

and the data (i.e., synthetic data does not contain “real” records), however there is still 

a risk of attribution. Attribution occurs when some attribute can be associated with a 

data subject (such as learning from a synthetic dataset that all men aged over 85 in a 

particular geographical area have cancer). 

The CAP methodology can be used to measure the risk of synthetic data. The 

Differential Correct Attribution Probability (DCAP), introduced by Elliot [17], 

measures the attribution risk as the probability of making a correct attribution (on a 

target variable), given knowledge of a set of key variables. An extension to this is the 

Targeted Correct Attribution Probability (TCAP) [18] which considers the case where 

an adversary will focus only on records in equivalence classes with an l-diversity on 

the target variable which is no lower than the value of the parameter Tau (which is 

usually set to 1). The TCAP metric is therefore the probability that those matched 

records yield a correct value for the target variable (i.e. that the adversary is able to 

make a correct attribution inference). A full description of the CAP methodology is 

given in Appendix A. 

3. Case study design 
This study presented here simulates the situation where model output is requested by 

the user of a TRE. Specifically, we will be assessing a logistic regression model of a 
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subset of the Samples of Anonymised Records from the 1991 UK census (SARS)1. to 

drive the creation of a synthetic dataset using an Evolutionary Algorithm (EA). The 

resulting synthetic dataset will have the same metadata structure as the original data 

but with the only data structure maintained in the synthesis being that represented in 

the regression model. That is, the synthetic dataset should be able to recreate the 

analytical output (the coefficients of a logistic regression model). 

Data 

The 1991 UK SARS Census dataset was downloaded from the UK data archive and then 

subset on seven areas in the West Midlands region (using the AREAP variable) and 

using seven explanatory variables (AREAP, AGE, ETHGROUP, LTILL, MSTATUS, 

SEX, TENURE). TENURE (housing tenure) was used as the response variable; having 

been converted to a binary variable (representing whether an individual lives in an 

owned or rented house). 940 records with missing values for TENURE were removed 

leaving 50357 records. See Appendix B for a data dictionary. 

The data were randomly split into training and holdout disjoint subsamples using 

simple random sampling. 

Experiments were performed on various splits but here we report on just three. 

1. Synthesising whole dataset 

2. 2-folds (one training dataset which is a ~50% sample containing 25178 

records and one holdout dataset also a ~50% sample containing 25179 

records) 

3. A two-fold-fold experiment where the one of the folds was itself split into 

two.  

The rationale for this series of experiments was as follows. The holdout dataset serves 

as a baseline. If the inferences that can be made about individuals in the original 

dataset (from the synthetic data/output) are no better than those than inferences made 

from the holdout dataset, then any inferences can be determined as normal statistical 

outcomes rather than statistical disclosures. The problem with this insight is that the 

TRE owner will have no holdout dataset to make this comparison. But we can envisage 

that they could split the data in two and then run the analysis on one of the halves and 

use the other as a hold out (and then vice versa). This in principle enables them to 

assess the risk of an output of that sort using the original-holdout comparison 

averaged across the two halves. The secondary issue with that approach is that it 

assumes that the relationship between the half dataset original and half dataset 

holdout is the same (in terms of risk) as that between the full dataset and an 

(imaginary) full holdout. By splitting the data again in experiment three we can 

examine whether the relationship holds across different sizes of data (at least for this 

case study). 

Henceforth, we refer to the training dataset as the original dataset for the rest of this 

document. The EA was run using the regression run on the original dataset (the hold-

 
1 https://doi.org/10.5255/UKDA-SN-7210-1 

https://doi.org/10.5255/UKDA-SN-7210-1
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out dataset was not involved and used only to provide a comparison of the results and 

a baseline for the TCAP score). 

The analytical output of the original dataset was a binary logistic regression performed 

on the TENURE variable, with all remaining variables used as explanatory variables. 

The variables were pre-processed by one-hot encoding the multi-categorical variables. 

See Appendix C for the reference categories. 

EA strategy 

The EA was initialised using a population (size = 32) of synthetic datasets (candidates) 

derived from the uniform distribution of the original (training) data. The fitness of 

these datasets (candidates) was measured by performing the same logistic regression 

(using the same data pre-processing steps as performed on the original data) and 

comparing the resulting regression coefficients to the original coefficients.2 The fitness 

was calculated at each generation. Fitness was calculated using the mean squared error 

(MSE) between synthetic and original coefficients.3 The fitness score should tend 

towards zero, i.e., a lower fitness score is optimal (a score of zero would indicate that 

the logistic regression model has been recreated identically). 

Preliminary exploratory experiments determined that crossover with stepped 

mutation produces good solutions efficiently. (Stepped mutation is where the 

mutation rate is divided by three every 250 generations). Parameter settings for the 

EA are detailed in Table 1. 

 

Parameter Value Details 

Number of generations 2000  

Initial population 
distribution 

Uniform  

Population size 32  

Mutation rate Stepped 
Starting at 0.005, divide by 3 every 250 
generations 

Crossover On 
Probability of whether to crossover is 0.8 

Crossover probability for each record is 0.1 

Table 1: Parameter settings for each run of the EA 

For each run the EA used information from the training dataset (regression 

coefficients, table values and distribution information) and did not access the holdout 

in any way.  

For the whole dataset experiment 10 runs of the EA were performed, as there was no 

holdout dataset. For the 2-fold split experiments the holdout was each of the folds in 

turn (with the other fold forming the original dataset) and a run of the EA was 

 
2 The EA is programmed in Python and the package used for regression was statsmodels, details here: 
https://www.statsmodels.org/ 
3 See Taub et al 2020 and Little et al 2025 for discussion of different utility metrics that might be used to 
drive the synthesiser. Where a table is the analytical output, the synthetic and original tables are 
compared cell-wise. 

https://www.statsmodels.org/
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performed for each combination of folds, therefore there were two runs. Each of the 

runs of the EA were randomly initialised, this means that each time the process was 

started (initial synthetic datasets were generated) a different random seed was used, 

to ensure that the starting place for each run was different. 

4. Results 

Experiment 1: Synthesising whole original dataset 

There was no holdout dataset, and the regression and univariate distributions were 

gathered from the whole original dataset. Ten randomly initialised runs were used. 

The regression coefficients for the original and the mean of ten runs of the EA are 

shown in Table 2. 

Feature 

Regression Coefficients Absolute 
difference Original Synthetic 

Constant 0.2498 0.2515 0.0017 

AGE 0.0012 0.0013 0.0002 

AREAP_58 -0.3754 -0.3753 0.0001 

AREAP_59 -0.3389 -0.3389 0.0000 

AREAP_60 0.3404 0.3405 0.0001 

AREAP_61 -0.7305 -0.7302 0.0003 

AREAP_62 0.0805 0.0807 0.0002 

AREAP_63 0.1464 0.1467 0.0003 

ETHGROUP_10 0.7427 0.7429 0.0002 

ETHGROUP_2 0.5044 0.5045 0.0000 

ETHGROUP_3 1.0247 1.0248 0.0001 

ETHGROUP_4 0.9189 0.9191 0.0002 

ETHGROUP_5 -1.6371 -1.6368 0.0003 

ETHGROUP_6 -0.7816 -0.7815 0.0001 

ETHGROUP_7 0.0191 0.0193 0.0003 

ETHGROUP_8 0.5156 0.5160 0.0004 

ETHGROUP_9 0.3519 0.3520 0.0001 

LTILL_2 -0.6933 -0.6913 0.0020 

MSTATUS_2 -0.8421 -0.8413 0.0007 

MSTATUS_3 -0.3890 -0.3887 0.0003 

MSTATUS_4 0.3676 0.3676 0.0001 

MSTATUS_5 -0.0176 -0.0174 0.0002 

SEX_2 0.0709 0.0723 0.0014 

MAE 0.0004 

Table 2: Absolute differences between the regression coefficients for the original 

and the mean of ten runs of the EA 

Below plots the MSE fitness (mean squared error of the logistic regression coefficients) 

for the EA for each of the ten runs: 
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Figure 1: the MSE fitness (mean squared error of the logistic regression coefficients) 

for the EA for each of the ten runs. 

The mean TCAP score across the ten runs was 0.4962 (using TENURE as target and 

all combinations of 3-6 keys) and 0.6317 (when using a single calculation of TENURE 

as target and all six remaining variables as the keys). 

Experiment 2: a two-fold split 

The data was split into 2 folds with a training dataset and a holdout. This was rotated 

so that each fold was a holdout once. There were therefore two runs of the EA. The 

MSE fitness (error of the regression coefficients) of the EA is plotted below for each of 

the two runs: 

  

Figure 2: the MSE fitness (mean squared error of the logistic regression coefficients) 

for the EA for each of the two runs in the twofold split. 
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The regression coefficients for the original and the synthetic dataset produced by fold 

1 are shown in Table 3. Similar figures were obtained for fold 2. 

Feature  

Regression 
Coefficients  

Absolute 
difference  

Original  Synthetic  

Constant  0.2677 0.2707 0.0030 

AGE  0.0016 0.0009 0.0007 

AREAP_58  -0.3797 -0.3794 0.0003 

AREAP_59  -0.3700 -0.3697 0.0003 

AREAP_60  0.2810 0.2816 0.0006 

AREAP_61  -0.7700 -0.7701 0.0001 

AREAP_62  0.0248 0.0245 0.0003 

AREAP_63  0.1416 0.1414 0.0002 

ETHGROUP_10  0.7738 0.7742 0.0004 

ETHGROUP_2  0.5627 0.5628 0.0001 

ETHGROUP_3  1.2134 1.2140 0.0006 

ETHGROUP_4  0.8100 0.8107 0.0007 

ETHGROUP_5  -1.6291 -1.6293 0.0002 

ETHGROUP_6  -0.8158 -0.8149 0.0009 

ETHGROUP_7  0.1094 0.1104 0.0010 

ETHGROUP_8  0.2285 0.2286 0.0001 

ETHGROUP_9  0.5768 0.5760 0.0008 

LTILL_2  -0.6865 -0.6840 0.0025 

MSTATUS_2  -0.8830 -0.8824 0.0006 

MSTATUS_3  -0.3673 -0.3672 0.0001 

MSTATUS_4  0.4125 0.4130 0.0005 

MSTATUS_5  0.0214 0.0219 0.0005 

SEX_2  0.0462 0.0482 0.0020 

MAE  0.0007 

Table 3: Absolute differences between the regression coefficients for the original and 

the synthetic for 2-fold experiment. 
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The regression coefficients for the original and the synthetic dataset produced by fold 

1 are shown in Table 4. 

Feature  

Regression 
Coefficients  Absolute 

difference  
Original  Synthetic  

Constant  0.3346 0.3347 0.0001 

AGE  0.0003 0.0011 0.0008 

AREAP_58  -0.4424 -0.4423 0.0001 

AREAP_59  -0.3913 -0.3913 0.0000 

AREAP_60  0.3211 0.3213 0.0002 

AREAP_61  -0.7996 -0.7996 0.0000 

AREAP_62  0.0586 0.0583 0.0003 

AREAP_63  0.1922 0.1922 0.0000 

ETHGROUP_10  1.1453 1.1459 0.0006 

ETHGROUP_2  0.6494 0.6489 0.0005 

ETHGROUP_3  1.0444 1.0445 0.0001 

ETHGROUP_4  0.6424 0.6423 0.0001 

ETHGROUP_5  -1.7081 -1.7079 0.0002 

ETHGROUP_6  -0.9576 -0.9576 0.0000 

ETHGROUP_7  -0.1042 -0.1037 0.0005 

ETHGROUP_8  0.1549 0.1548 0.0001 

ETHGROUP_9  1.1065 1.1061 0.0004 

LTILL_2  -0.7122 -0.7119 0.0003 

MSTATUS_2  -0.8900 -0.8901 0.0001 

MSTATUS_3  -0.3501 -0.3503 0.0002 

MSTATUS_4  0.4877 0.4881 0.0004 

MSTATUS_5  0.0044 0.0044 0.0000 

SEX_2  0.0591 0.0591 0.0000 

MAE  0.0002 

Table 4: Absolute differences between the regression coefficients for the original 

and the synthetic, for 2-fold-fold experiment 
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TCAP comparison for different fold combinations 

Table 5 compares the TCAP of the synthetic to the original (TCAP O) and the synthetic 

to the holdout (TCAP H), for each of the different folds. (The TCAP used is the one 

calculated across all combinations of 3-6 keys). 

 

  TCAP O  TCAP H  Difference  

Fold 1  0.523784 0.529662 -0.00588 

Fold 2  0.489204 0.466176 0.023028 

Mean  0.506494 0.497919 0.008575 

Standard 
Deviation  

0.01729 0.031743 0.014453 

      

 TCAP O 
TCAP 
H 

Difference   

Fold-Fold 1.1 0.504837 
0.53571
6 

-0.03088   

Fold-Fold 1.2 0.52773 
0.52212
1 

0.005609   

Mean 0.516284 
0.52891
9 

-0.01264   

Standard 
deviation 

0.011447 
0.00679
8 

0.018244   

Table 5: TCAP measurements for the 2-fold and 2-fold-fold experiments 

The basic observation is that on average the results of the second level folds is very 

similar to the first level fold – both have slightly negative marginal risk scores – 

indicating the marginal risk is effectively zero and that the release of this output would 

be safe. 

5. Discussion 
The forgoing experiments demonstrate how the method might be used by a trusted 

research environment (TRE) to assess one type of statistical output. In this example, 

our imaginary TRE – using this method - would be happy to release the regression 

coefficients as the model is unable to discriminate between individuals who 

contributed to the underlying dataset and those from another sample drawn from the 

same population. 

There are several issues which mean that at this stage we must be a cautious about 

what we claim. Firstly, we have not in any sense proved that the method works. This 

is a quantitative demonstration. As a minimum in future work would need to test this 

on a wider range of data and outputs. Secondly the synthetic data that we have 

produced although incredibly close to the original in the model coefficients it has 
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produced is not identical. Arguably therefore not all the information in the model has 

transferred to the synthetic data. 

Figure 3 shows how TCAP evolves as the synthetic data evolve (moving from right to 

left - i.e. decreasing MAE). On the left-hand side of this graph are datasets from the 

final generations of the EA. Visually they are so close the vertical axis that their token 

overlaps it but they are just to the right of the axis. We can extrapolate down to MAE=0 

using the regression equation and if we do that then that has a negligible effect on the 

risk. However, this would still be an extrapolation with all the perils that implies. We 

do know that there is one dataset on the vertical axis – the original data - and that has 

a TCAP score of 1. 

Figure 3: Plot of regression line and points for TCAP (single calculation using 6 keys) 

against MAE. This was performed using all points from all ten randomly initialised 

runs. Correlation is -0.9374 Regression line: TCAP = 0.2279 – 0.0556 MAE 

A key point here is the level of granularity that we are measuring the regression 

coefficients at an arbitrary fine level of granularity (say 100 decimal places) even the 

slightest change in the dataset (say of one value on one record) will be detectable in 
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non-zero errors. So, if we want absolute zero to be our standard then there will be only 

one dataset that meets that criteria – the original data. Given that we have virtually hit 

the vertical axis (and this does happen with all examples we have tested) any 

improvement in the fitness can only happen if the trajectory becomes vertical (again 

assuming super-fine granularity). 

On the surface it might seem that we have uncovered a new peril here – surely this 

approach is open to an intruder as a form of reconstruction attack (see [21] for a 

discussion about the efficacy of these). Specifically, if an adversary runs the algorithm 

long enough and with enough precision on the objective function, will they find the 

original data? Well yes and no. Yes, in principle it’s a form of reconstruction attack and 

in essence it is the risk of this that we are measuring. But to be clear, even for very 

modest sized datasets the size of the search space is unimaginably large, and the 

algorithm is essentially blind. So, if an adversary had an infinite amount of time, they 

might eventually find the original data using this method 

ology, but for practical purposes with currently imaginable technology they could not. 

The above applies for single outputs (that would be cleared by a TRE using traditional 

output checking). For these, the method is a good way to measure disclosure risk but 

a poor way for an adversary to attack those outputs. Or to put this another way if the 

method itself says the output is safe then an adversary should not be able to use the 

method to attack the data. 

The situation is more complicated when we consider multiple outputs. To the extent 

that these intersect but provide different information about the data we can imagine 

that emergent disclosure of unreleased data structures as a potential risk. Our 

exploratory work on this suggests that the algorithm becomes slower to converge as 

the number of outputs increases and converges at a lower level of overall fitness so that 

emergent structure may not be computable using this type of algorithm – this remains 

to be explored. 

Limitations and future work 

One obvious limitation of the work presented is the extrapolation across different 

sample sizes with the fold mechanism. We have experimented with various fold splits, 

in particular shrinking the size of the holdout dataset. This has the advantage of 

moving the training data closer to the distribution of the original data at the costs of 

increasing measurement error in the hold out comparison. Realistically though this 

will only be a significant problem where the size of the original dataset is small. 

However, this needs extensive testing with datasets of different sizes and shapes and 

different types of analytical output. 

The work here has focused on categorical data – but data in other forms would need 

to be looked at for wider adoption – particularly numerical data for which the mutation 

operator might need to operate differently. 

There is also a further question of whether synthesisers other than evolutionary 

algorithms might be used. In principle any algorithm that can use analytical outputs 
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as an objective function for an optimiser could be used and this merits further 

exploration. 

Conclusion 

This paper has presented a methodology for formalising the output checking in 

Trusted Research Environments using an EA algorithm which uses the analytical 

output in question as an objective function. We have demonstrated that the method 

has promise – further work is needed to understand its capacities and limitations. 
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Appendix 

A. Measuring Disclosure Risk using TCAP 

For the experiments within this paper, we refer to the attribute disclosure risk simply 

as the disclosure risk, since this is the main form of disclosure risk associated with 

synthetic data. [17] and [12] introduced a measure for the disclosure risk of synthetic 

data called the Correct Attribution Probability (CAP) score. The disclosure risk is 

calculated using an adaptation used by [19] called the Targeted Correct Attribution 

Probability (TCAP). TCAP is based on a scenario whereby we assume that an intruder 

has partial knowledge about a particular individual, and they wish to infer the value of 

a sensitive variable (the target) for that individual. Specifically, we assume that they 

know: 

• the individual is in the original dataset (that was used to generate the 

synthetic data), and  

• the individuals' values for some of the variables in the dataset (the keys).  

These are strong assumptions, which has the benefit of then dominating most other 

scenarios, with the one possible exception being a membership inference attack. The 

TCAP metric is then the probability that those matched records yield a correct value 

for the target variable (i.e. that the adversary makes a correct attribution inference). 

The TCAP measure is used because it is easily computable across all methods (since it 

simply compares matching records from the original and synthetic datasets), which is 

a benefit over other measures such as that proposed by [20] which could be 

computationally intractable for larger datasets and relies on the very strong 

assumption that the intruder knows every case but one. 

Following [18], TCAP is calculated as follows: define do as the original data, and Ko and 

To as vectors for the key and target information, respectively do = {Ko, To}. 

Likewise, $d_{s}$ is the synthetic dataset ds = {Ks, Ts}. 

The Within Equivalence Class Attribution Probability (WEAP) score for the synthetic 

dataset is then calculated. The WEAP score for the record indexed j is the empirical 

probability of its target variables given its key variables: 

𝑊𝐸𝐴𝑃𝑠,𝑗 = Pr(𝑇𝑠,𝑗|𝐾𝑠,𝑗) =
∑ [𝑇𝑠,𝑖 = 𝑇𝑠,𝑗 , 𝐾𝑠,𝑖 = 𝐾𝑠,𝑗]
𝑛
𝑖=1 )

∑ [𝐾𝑠,𝑖 = 𝐾𝑠,𝑗
𝑛
𝑖=1 ]

 

where the square brackets are Iverson brackets, n is the number of records, and K and 

T are vectors for the key and target information, respectively. Using the WEAP score 

the synthetic dataset is then reduced to records with a score of 1.  

The TCAP for record j based on a corresponding original dataset do is the same 

empirical, conditional probability but derived from do: 

𝑇𝐶𝐴𝑃𝑜,𝑗 = Pr(𝑇𝑠,𝑗|𝐾𝑠,𝑗)𝑜 =
∑ [𝑇𝑜,𝑖 = 𝑇𝑠,𝑗 , 𝐾𝑜,𝑖 = 𝐾𝑠,𝑗]
𝑛
𝑖=1 )

∑ [𝐾𝑜,𝑖 = 𝐾𝑠,𝑗
𝑛
𝑖=1 ]
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For any record in the synthetic dataset for which there is no corresponding record in 

the original dataset with the same key variable values, the denominator in Equation 4 

will be zero and the TCAP is therefore undefined.  

TCAP has a value between 0 and 1; a low value would indicate that the synthetic dataset 

carries little risk of disclosure, whereas a TCAP score close to 1 indicates a higher risk. 

With the same rationale as with the baseline datasets, a baseline risk value can be 

calculated (essentially the probability of the intruder being correct if they drew 

randomly from the univariate distribution of the target variable).  

For each census dataset, three targets and six key variables were used, and the 

corresponding TCAP scores calculated for sets of 6 keys (based on the standard key 

variable sets produced by [5]. The overall mean of the TCAP scores was then calculated 

as the overall disclosure risk score. Where possible, the selected key/target variables 

were consistent across each country. 
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B. UK 1991 SARS Census data dictionary 

Variable 
name 

Description Label Values 

AGE age   

AREAP Individual SAR area 57 Birmingham 

  58 Coventry 

  59 Dudley 

  60 Sandwell 

  61 Solihull 

  62 Walsall 

  63 Wolverhampton 

ETHGROUP Ethnic group 1 White 

  2 Black Caribbean 

  3 Black African 

  4 Black other 

  5 Indian 

  6 Pakistani 

  7 Bangladeshi 

  8 Chinese 

  9 Other-Asian 

  10 Other-other 

LTILL Limiting long-term 
illness 

1 Yes 

  2 No 

MSTATUS Marital status 1 Single 

  2 Married 

  3 Remarried 

  4 Divorced 

  5 Widowed 

SEX Sex 1 Male 

  2 Female 

TENURE Tenure of household 
space (derived into a 
binary variable) 

0 Own house 

  1 Rent house 
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C. Regression reference categories 

Variable Reference 
category 

Label 

AREAP 57 Birmingham 

ETHGROUP 1 White 

LTILL 1 Yes 

MSTATUS 1 Single 

SEX 1 Male 

 


