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Abstract

This paper examines the feasibility of generating coherent, combined synthetic datasets (for teaching,
evaluation, and exploratory research) using only cleared analytical outputs from multiple independent
data owners. Using an evolutionary algorithm (EA), analytical outputs such as regression coefficients
and summary tables are used to guide the synthesis of data without direct access to any safeguarded
microdata. A series of experiments explore scenarios with varying degrees of overlap in variables and
samples, scaling from two to four datasets. Across all cases, the resulting synthetic datasets closely
reproduce original analytical outputs and consistently outperform approaches that merge
independently synthesised datasets. These findings demonstrate the robustness and scalability of a
federated-style approach to synthetic data.

1. Introduction

Access to detailed microdata is increasingly constrained by legal, ethical, and governance
requirements designed to protect confidentiality and prevent disclosure. While such controls
are essential, they present challenges for teaching, methodological development, and
exploratory research, where flexible access to realistic data structures is often required.
Synthetic data has emerged as a promising solution, offering data that resemble real datasets
in structure and statistical properties while avoiding direct disclosure of sensitive information.

Most synthetic data generation approaches assume full access to the dataset during the
synthesis process (see [1] for a review). However, in many real-world settings—particularly
those involving multiple data owners or secure research environments—such access is not
feasible. Instead, data custodians may only be able to release cleared analytical outputs, such
as regression coefficients or summary tables. This raises a critical question: can analytically
useful synthetic datasets be generated using only these limited outputs, without any access to
the original microdata?

This paper addresses that question by investigating a federated-style approach to synthetic
data generation, in which analytical outputs from multiple independent datasets are combined
to guide the synthesis of a single, coherent synthetic dataset. Using an evolutionary algorithm
(EA) [2], the approach seeks to reproduce released analytical results while preserving
consistency across outputs derived from different data sources. The work is situated within
the context of teaching and methodological use cases, where analytical utility and
interpretability are often more important than exact record-level fidelity.

Through a series of experiments that vary the number of contributing datasets, the degree of
overlap in variables, and the overlap in samples, this study evaluates the feasibility,
robustness, and scalability of the proposed approach. Particular attention is paid to whether
joint synthesis from combined outputs outperforms approaches that independently synthesise
datasets (and subsequently attempt to merge them).
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2. Literature Review

2.1 Synthetic Data Generation

Synthetic data generation has a long history in statistical disclosure control [1], where it has
been used to reduce disclosure risk [3] while retaining analytical utility [4]. Early approaches
focused on parametric modelling and multiple imputation frameworks [5,6], generating
synthetic records from fitted statistical models [7]. More recent developments have
incorporated machine learning techniques, including decision trees [8], Bayesian networks
[9], and deep generative models such as Generative Adversarial Networks (GANs) [10,11].

While these methods can produce realistic data, they typically require full access to the original
dataset during training. This assumption limits their applicability in settings where data
cannot be pooled or where only aggregate information can be released. Moreover, high-fidelity
generative models may introduce new disclosure risks if not carefully controlled, particularly
when overfitting occurs [12].

2.2 Utility-Driven and Output-Constrained Synthesis

An alternative strand of research emphasises utility-driven synthesis, where synthetic data are
explicitly optimised to reproduce specific analytical results rather than the full joint
distribution of the data [13, 14]. In this framework, analytical outputs—such as regression
coefficients or contingency tables—serve as constraints or targets for the synthesis process.
EAs and other optimisation-based methods have been shown to be effective in this context,
particularly when the desired outputs are well defined.

Output-constrained synthesis aligns closely with the needs of Trusted Research Environments
(TREs), where cleared outputs are routinely produced having been scrutinised for disclosure
risk. By limiting the information used in synthesis to already approved outputs, this approach
offers a transparent and governance-friendly pathway to synthetic data creation. However, our
existing work considers only single datasets and does not address the challenges of combining
outputs from multiple sources.

2.3 Federated and Distributed Data Contexts

Federated analysis [15] and learning [16, 17] have gained prominence as mechanisms for
extracting value from distributed data without centralising sensitive information. In such
settings, models or summary statistics are shared rather than raw data. While federated
learning focuses on training shared predictive models, less attention has been paid to the
generation of shared synthetic datasets from federated outputs. Although our recent review
[18] indicates growing interest.

The generation of combined synthetic data from multiple independent outputs introduces
additional challenges, including ensuring coherence across analyses, resolving differences in
sample composition, and managing partial overlap in variables. Naively combining synthetic
datasets generated independently from each source does not guarantee analytical consistency,
particularly when relationships span datasets.

2.4 Contribution of This Paper

This paper contributes to the literature by demonstrating that coherent synthetic datasets can
be generated directly from combined analytical outputs released by multiple data owners. By
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using an EA to jointly satisfy multiple analytical constraints, the approach avoids the pitfalls
of post hoc dataset merging and scales to scenarios involving increasing numbers of datasets.

The focus on teaching and methodological use cases positions this work as a practical
complement to existing synthetic data research, offering a low-risk, transparent, and
governance-compatible method for producing analytically faithful synthetic data in restricted
access environments.

3. Methodological Framework

This section describes the methodological framework used to generate a single coherent
synthetic dataset from analytical outputs released by multiple independent data owners. The
framework is designed for settings in which direct access to microdata is not possible and only
cleared analytical outputs and limited metadata are available. Released outputs are treated as
explicit utility constraints, and an EA is used to jointly satisfy these constraints during data
synthesis.

3.1 Problem Setting and Assumptions

We consider a setting in which multiple data owners each hold a dataset that cannot be shared
or pooled due to governance, confidentiality, or legal restrictions. Let there be K independent
data owners, each holding a dataset

Dk = {XklleZl ""ank}’ k= 1, ...,K,

where each x;; denotes an individual record represented as a vector of variable values, and the
microdata D, are not accessible outside the owner’s secure environment.

Each data owner releases a set of cleared analytical outputs

Ok = {Okl' ey Okmk}'

derived from known analytical procedures applied to D,. These outputs may be based on
overlapping or non-overlapping variable sets, and the underlying datasets may differ in
sample composition.

The objective is to generate a single synthetic dataset

D ={&, ... %},

such that applying the same analytical procedures to D yields outputs that closely reproduce
all released outputs 0,, ..., Ox. The synthetic dataset is not intended to approximate the full
joint distribution of any Dy, but rather to reproduce released analytical results to an acceptable
level of error.

Accordingly, the framework operates under the assumptions that: (i) no access to original
microdata is available at any stage; (ii) only cleared analytical outputs and non-disclosive
metadata are used; and (iii) the resulting synthetic dataset must be internally coherent and
analytically interpretable.
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3.2 Analytical Outputs as Utility Constraints
Each released analytical output defines a set of utility constraints on the synthetic data.

Applying the analytical function fi;(-) to the synthetic dataset yields

Oxj = frj (D).

The synthesis task is therefore framed as a joint optimisation problem in which the synthetic
dataset is adjusted so that 6, ; ~ oy for all outputs across all data owners. This utility-driven
formulation avoids attempting to reconstruct the full data-generating process and instead
focuses explicitly on reproducing the analyses that users are expected to perform.

When multiple outputs are released—potentially from different datasets—the framework
seeks a single synthetic dataset that jointly satisfies all constraints. This distinguishes the
approach from methods that independently synthesise datasets and attempt to merge them
post hoc.

3.3 Metadata and Variable Representation

In addition to analytical outputs, limited non-disclosive metadata are assumed to be
available. Let M, denote metadata for dataset D, including variable definitions, category
labels, and marginal proportions.

To ensure a consistent representation, combined metadata M* are constructed. For
categorical variables, category proportions are averaged across datasets:

K
. 1
Pc = Ez Pkc
k=1

where py. is the proportion of category c in dataset Dj.

The combined metadata constrain the feasible space of synthetic datasets and ensure realistic
structure, while introducing no additional disclosure risk.

3.4 Evolutionary Algorithm for Joint Synthesis

An EA is used to search for a synthetic dataset that satisfies all analytical constraints. Each
candidate solution represents a complete synthetic dataset D(9"), where g indexes generations
and i indexes individuals within a generation.

For each candidate dataset, a fitness function is defined as:
K mg
L(D) = Z Z Wi £ (0kj, 0kj),
k=1 j=1

where {(:,) is the loss function and wy; are optional weights.

The EA proceeds via initialisation from M *, evaluation, selection, crossover, and mutation. A
stepped mutation schedule is used to encourage early exploration and later convergence. The
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stepped mutation schedule divides the mutation rate by three at regular intervals and in
preliminary experiments was more effective than a fixed mutation rate. This optimisation-
based approach is well suited to handling multiple, potentially competing analytical
constraints.

3.5 Evaluation Metrics

During optimisation, mean squared error (MSE) is used as the fitness measure:

1 - 2
MSEz—E(okj—okj) :
10 |4
k,j

For reporting and interpretation, mean absolute error (MAE) is used:

1
MAE=—Z|O i — Ok l.
|0| ' kj kj
k,j

Together, these metrics provide a clear assessment of optimisation performance and analytical
fidelity across experiments.

4. Data and Experimental Design

This section describes the data used in the study and the experimental design employed to
evaluate the proposed joint synthesis framework. The experiments are designed to assess
whether analytically coherent synthetic datasets can be generated from distributed analytical
outputs, and how performance varies with the number of contributing datasets and the degree
of overlap in samples and variables.

4.1 Data Description

The experiments are based on a set of related datasets sharing a common variable structure
but differing in sample composition. All variables are categorical, reflecting typical data
released for teaching and methodological purposes in secure environments. The outcome
variable is binary, and covariates include a set of categorical predictors commonly used in
applied regression analysis.

The original datasets are not accessed directly during synthesis. Instead, all experiments rely
exclusively on cleared analytical outputs and non-disclosive metadata derived from these
datasets. Metadata specify variable definitions, category labels, and marginal category
proportions. No record-level information or joint distributions are used at any stage.

To support joint synthesis, combined metadata are constructed as described in Section 3.3,
ensuring that all candidate synthetic datasets share a common variable representation.

For simplicity we are using one dataset (a subset of the 1991 SARS UK Census dataset [19])
and partitioning that up to represent the different datasets.

The overall dataset, the 1991 SARS UK Census dataset was subsetted on seven areas in the
West Midlands region (using the AREAP variable) and used eight variables (AREAP, AGE,
ETHGROUP, LTILL, MSTATUS, QUALNUM, SEX, TENURE). TENURE (housing tenure)
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was used as the target variable for regression models, and this was converted to binary
(individual lives in an owned or rented house). There were 50357 records in the dataset, after
removing those with missing values for TENURE. Appendix A1 contains a data dictionary, and
Appendix A2 details the reference levels for the regression models.

4.2 Experimental Scenarios

A sequence of experimental scenarios is constructed to examine how synthesis performance
changes as the number and structure of contributing datasets vary. The scenarios are ordered
to progressively increase complexity.

o Experiment 1: Two datasets with different samples/rows and the same variables
o Experiment 2: Three datasets with different samples/rows and the same variables
o Experiment 3: Four datasets with different samples/rows and the same variables

o Experiment 4: The data is first split into an original and holdout dataset, then from the
original two datasets are created each with the same samples/rows but different
variables (with the degree of overlap between outputs tested)

Each scenario is evaluated using the same synthesis framework and evaluation metrics,
allowing direct comparison across experiments.

4.3 Synthetic Data Generation Procedure

For all experiments the EA was initialised using a population (size = 32) of synthetic datasets
(candidates) derived from the uniform distribution of the original (training) data. The fitness
of these datasets (candidates) was measured by performing the same logistic regression (using
the same data pre-processing steps as performed on the original data) and comparing the
resulting regression coefficients to the original coefficients. The fitness was calculated at each
generation. Fitness was calculated as the MSE between synthetic and original coefficients. The
fitness score should tend towards zero, i.e., a lower fitness score is optimal (a score of zero
would indicate that the logistic regression model had been recreated identically).

Exploratory experiments determined that crossover with stepped mutation produced the best
solution (stepped mutation is where the mutation rate is divided by three every 250
generations), and the EA ran for 2000 generations. Ten randomly initialised runs of the EA
were performed. At each generation the MAE between the regression coefficients (for the
optimal dataset) and the original was recorded.

4.4 Analytical Outputs Used
One class of analytical outputs are used to define utility constraints:

¢ Regression outputs: Coefficients from logistic regression models fitted to each
dataset, using a common model specification where applicable.

This reflects analyses that are routinely permitted for release from secure research
environments and are sufficient to capture both multivariate and marginal relationships
relevant for teaching use cases.
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Results are summarised using regression coefficient comparisons, tabular discrepancies, and
graphical summaries. All figures and tables are interpreted in terms of analytical fidelity rather
than record-level similarity, consistent with the intended use of the synthetic data.

5. Experimental Results

This section uses a mix of visuals and tables to present and analyse our results including: (i)
EA convergence plots (Figure 1) and (ii) regression coefficient tables (e.g. Tables 4 and 5) to
demonstrate stable optimization behaviour across all experiments consistently low mean
absolute error (MAE) between original and synthetic outputs, respectively, (iii) comparative
tables (e.g. Table 6) to highlight that direct synthesis from combined analytical outputs yields
synthetic datasets closest to the original full dataset, and to further demonstrate that
descriptive structure is well preserved, even when outputs are distributed across datasets with
limited overlap.

5.1 Experiment 1

This scenario has two datasets each with different samples/rows and the same variables. For
this we split our original dataset into two (on the rows), with dataset A having 25178 rows and
dataset B having 25179 rows. Each have the same eight variables (AREAP, AGE, ETHGROUP,
LTILL, MSTATUS, QUALNUM, SEX, TENURE).

The analytical output for was a logistic regression performed on the TENURE variable, with
all remaining variables used as predictors. The same logistic regression was performed on
datasets A and B; it was also performed on the original dataset for comparison. Figure 1 plots
the MSE fitness for each of the ten randomly initialised runs of the EA.

MSE fitness
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Figure 1: Experiment 1, MSE fitness plot for ten randomly initialised runs
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To compare the results, we consider the error for the original datasets A and B compared to
the original, and then consider the synthetic data compared to the original. In Table 1Error!
Reference source not found. we can see that the model trained on the synthetic data has
lower error than each of the models trained on the individual original datasets.

Table 1: Experiment 1, regression coefficients for synthetic data and original datasets A and B,
compared to the original regression coefficients

:‘)I:it(tla;et A Original Original Synthetic

combined) Dataset A Dataset B
Features Coefficient Coefficient Coefficient Coefficient
Constant 0.258 0.315 0.203 0.256
AGE 0.002 0.001 0.003 0.006
AREAP_58 -0.386 -0.411 -0.361 -0.385
AREAP_59 -0.364 -0.399 -0.329 -0.362
AREAP_60 0.299 0.309 0.290 0.299
AREAP_61 -0.733 -0.762 -0.705 -0.732
AREAP_62 0.053 0.021 0.083 0.054
AREAP_63 0.134 0.120 0.147 0.134
ETHGROUP_10 0.780 0.703 0.859 0.785
ETHGROUP_2 0.490 0.373 0.600 0.493
ETHGROUP_3 1.158 1.114 1.217 1.168
ETHGROUP_4 0.914 1.174 0.641 0.894
ETHGROUP_5 | -1.658 -1.669 -1.648 -1.658
ETHGROUP_6 -0.829 -0.846 -0.812 -0.828
ETHGROUP_7 | -0.029 -0.159 0.100 -0.023
ETHGROUP_8 o0.640 0.795 0.485 0.631
ETHGROUP_9 | 0.369 0.283 0.446 0.369
LTILL_ 2 -0.646 -0.680 -0.614 -0.645
MSTATUS_2 -0.824 -0.731 -0.914 -0.827
MSTATUS_3 -0.381 -0.351 -0.411 -0.383
MSTATUS_4 0.396 0.482 0.312 0.393
MSTATUS_5 -0.066 -0.028 -0.103 -0.067
QUALNUM_ 1 -0.983 -0.939 -1.024 -0.984
QUALNUM_ 2 -1.523 -1.667 -1.387 -1.520
SEX_2 0.056 0.039 0.074 0.057
MAE between
dataset and 0.0634 0.0629 0.0032

whole original:

5.2 Experiment 2

This scenario has three datasets each with different samples/rows and the same variables. For
this we split our original dataset into three (on the rows), with dataset A and B having 16786
rows and dataset C having 16785 rows. Each have the same eight variables (AREAP, AGE,
ETHGROUP, LTILL, MSTATUS, QUALNUM, SEX, TENURE).
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The analytical output for was a logistic regression performed on the TENURE variable, with
all remaining variables used as predictors. The same logistic regression was performed on
datasets A, B and C, it was also performed on the original dataset for comparison.

To compare the results, we consider the error for the original datasets A, B and C compared to
the original, and then consider the synthetic data compared to the original. In Table 2Error!
Reference source not found. we can see that the model trained on the synthetic data has

lower error than each of the models trained on the individual original datasets.

Table 2: Experiment 2, regression coefficients for synthetic data and original datasets A, B and C,
compared to the original regression coefficients

Features
Constant

AGE
AREAP_58
AREAP_59
AREAP_60
AREAP_ 61
AREAP_62
AREAP_63
ETHGROUP_10
ETHGROUP_ 2
ETHGROUP_3
ETHGROUP_4
ETHGROUP_5
ETHGROUP_6
ETHGROUP_7
ETHGROUP_S8
ETHGROUP_9
LTILL_2
MSTATUS_ 2
MSTATUS_3
MSTATUS_4
MSTATUS_5
QUALNUM_ 1
QUALNUM_ 2
SEX_ 2

MAE between
outputs and
whole original:

Original
(Dataset A, B,
C combined)

Coefficient
0.258
0.002
-0.386
-0.364
0.299
-0.733
0.053
0.134
0.780
0.490
1.158
0.914
-1.658
-0.829
-0.029
0.640
0.369
-0.646
-0.824
-0.381
0.396
-0.066
-0.983
-1.523
0.056

5.3 Experiment 3

This scenario has four datasets each with different samples/rows and the same variables. For
this we split our original dataset into four (on the rows), with dataset A 12590 rows and

Original
Dataset A
Coefficient
0.191
0.002
-0.412
-0.379
0.316
-0.788
0.038
0.184
0.742
0.561
1.474
1.178
-1.661
-0.972
0.027
0.550
0.293
-0.618
-0.794
-0.344
0.385
-0.075
-0.927
-1.508
0.114

0.0618

Original
Dataset B
Coefficient
0.265
0.001
-0.414
-0.377
0.265
-0.684
0.084
0.136
1.059
0.507
0.592
0.758
-1.730
-0.754
-0.046
0.661
0.308
-0.628
-0.786
-0.427
0.393
0.006
-1.086

-1.549
0.031

0.0704

Original
Dataset C

Coefficient
0.322
0.003
-0.338
-0.337
0.319
-0.732
0.039
0.085
0.590
0.395
1.312
0.831
-1.591
-0.762
-0.071
0.708
0.543
-0.696
-0.892
-0.378
0.412
-0.125
-0.937
-1.531
0.024

0.0578

Synthetic

Coefficient
0.262
0.006
-0.387
-0.364
0.299
-0.732
0.055
0.134
0.802
0.485
1.107
0.911
-1.662
-0.824
-0.032
0.643
0.383
-0.648
-0.824
-0.385
0.397
-0.063
-0.986
-1.530
0.054

0.0058
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datasets B, C and D having 12589 rows. Each have the same eight variables (AREAP, AGE,
ETHGROUP, LTILL, MSTATUS, QUALNUM, SEX, TENURE).

The analytical output for this was a logistic regression performed on the TENURE variable,
with all remaining variables used as predictors. The same logistic regression was performed
on datasets A, B, C and D, it was also performed on the original dataset for comparison.

To compare the results, we consider the error for the original datasets A, B, C and D compared
to the original, and then consider the synthetic data compared to the original. In Table
3Error! Reference source not found. we can see that the model trained on the synthetic
data has lower error than each of the models trained on the individual original datasets.

Table 3: Experiment 3, regression coefficients for synthetic data and original datasets A, B, C and
D, compared to the original regression coefficients

Coefficients

Features B]?aéas]gt A, g;lé‘ll Srzl Original Original Original Svnthetic

C(;mi)ine 4 A Dataset B Dataset C Dataset C yn
Constant 0.258 0.217 0.212 0.354 0.250 0.262
AGE 0.002 0.005 0.003 0.000 0.001 0.007
AREAP_58 -0.386 -0.504  -0.434 -0.321 -0.281 -0.390
AREAP_59 -0.364 -0.388  -0.340 -0.363 -0.363 -0.365
AREAP_60 0.299 0.242 0.270 0.388 0.296 0.300
AREAP_61 -0.733 -0.662  -0.789 -0.750 -0.739 -0.731
AREAP_62 0.053 -0.020 -0.001 0.168 0.063 0.053
AREAP_63 0.134 0.170 0.133 0.117 0.115 0.136
ETHGROUP_10 0.780 0.428 0.720 0.842 1.103 0.750
ETHGROUP_2 0.490 0.441 0.363 0.621 0.541 0.496
ETHGROUP_3 1.158 0.916 1.808 0.333 1.584 1.090
ETHGROUP_4 0.914 0.479 1.154 0.881 1.167 0.885
ETHGROUP_5 -1.658 -1.452  -1.666 -1.757 -1.790 -1.656
ETHGROUP_6 -0.829 -0.833  -0.827 -0.847 -0.809 -0.831
ETHGROUP_7 -0.029 -0.113 0.169 -0.451 0.208 -0.078
ETHGROUP_S8 0.640 1.150 0.416 0.349 0.496 0.627
ETHGROUP_9 0.369 0.461 0.074 0.389 0.660 0.399
LTILL 2 -0.646 -0.598  -0.641 -0.719 -0.626 -0.646
MSTATUS_ 2 -0.824 -0.932  -0.824 -0.740 -0.804 -0.827
MSTATUS_3 -0.381 -0.502  -0.367 -0.423 -0.245 -0.396
MSTATUS_4 0.396 0.292  0.507 0.516 0.273 0.398
MSTATUS_ 5 -0.066 -0.274 -0.113 0.070 0.059 -0.072
QUALNUM_ 1 -0.983 -0.885  -1.186 -0.918 -0.937 -0.971
QUALNUM_ 2 -1.523 -1.495 -1.489 -1.491 -1.626 -1.520
SEX_ 2 0.056 0.032 0.091 0.055 0.048 0.055
MAE between
outputs and 0.1255 0.1005 0.1143 0.1045 0.0116

whole original:
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5.4 Experiment 4

This is a variation where the data is first split into two datasets — a train (or original) and
holdout. This was a fifty-fifty split, with train having 25178 records and the holdout having
25179. The holdout is set aside and not used during the EA process but used to provide a
holdout comparison at the end. The training dataset is then split into two datasets (each with
the same samples/rows but different variables, and at least one variable overlapping both).
Experiment 4.1 has one overlapping variable, 4.2 has two overlapping variables and 4.3 has
three overlapping variables. The holdout will be used to evaluate the synthetic data by
calculating how a logistic regression created from the synthetic data predicts on the unseen
holdout data, compared to the logistic regressions created from datasets A and B separately.

5.4.1 Experiment 4.1

Overall, there were 8 variables (AREAP, AGE, ETHGROUP, LTILL, MSTATUS, QUALNUM,
SEX, TENURE) — the datasets (n=25178) were split such that

e Dataset A had AREAP, ETHGROUP, QUALNUM, SEX, TENURE
e Dataset B had AGE, LTILL, MSTATUS, TENURE

TENURE was therefore the overlapping variable. For both dataset A and B a logistic regression
was the analytical output, with TENURE being used as the target variable and the remaining
variables as predictors. Run 2 produced the optimal dataset, with the lowest fitness. Table 4
compares the logistic regression coefficients for output A to those obtained from the synthetic
data produced by run 2. Table 5 compares the logistic regression coefficients for output B to
those obtained from the synthetic data produced by run 2.

Table 4: Experiment 4.1, regression coefficients for synthetic run 2 compared to the original
regression A coefficients

Feature Original Coefficient Synthetic Coefficient Absolute difference
Constant -0.499 -0.398 0.101
AREAP_58 -0.331 -0.318 0.012
AREAP_59 -0.490 -0.479 0.011
AREAP_60 0.250 0.264 0.014
AREAP_61 -0.793 -0.786 0.008
AREAP_62 0.008 0.016 0.007
AREAP_63 0.109 0.120 0.010
ETHGROUP_

0.860
10 0.858 0.003
ETHGROUP_ 0.654
2 0.648 ) 0.006
ETHGROUP_ 0.775
3 0.769 ’ 0.006
ETHGROUP_

1.276
4 1.271 0.005
ETHGROUP_ 644
5 -1.646 ’ 0.002
ETHGROUP_
6 -0.878 "Dk 0.007
ETHGROUP_

-0.116
7 -0.124 0.008
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ETHGROUP_

8 0.634 0.637 0.004

ETHGROUP_ 0.494

9 0.491 0.003

QUALNUM_1 -1085 -1.071 0.015

QUALNUM_2 _{621 -1.611 0.010

SEX 2 0.043 0.094 0.051
MAE: 0.015

Table 5: Experiment 4.1, regression coefficients for synthetic run 2 compared to the original
regression B coefficients

Feature Original Synthetic  Absolute
Coefficient Coefficient difference
Constant 0.112 0.112 0.000
AGE 0.005 0.001 0.004
LTILL_ 2 -0.707 -0.709 0.001
MSTATUS_2 -0.954 -0.953 0.001
MSTATUS_3 -0.464 -0.463 0.001
MSTATUS_4 o0.320 0.320 0.000
MSTATUS_5 -0.164 -0.164 0.000
MAE: 0.001

The holdout data was put through the logistic regression models from output A and output B
to measure their accuracy in predicting TENURE. These models were generated using the
original data. A logistic regression model was then generated using the synthetic data and the
holdout data put through this. The accuracy for all models is in Table 6. The model built on
the synthetic dataset outperforms models A and B, both of which were trained on the original.
The synthetic data was therefore able to predict better on a holdout dataset than models
trained on the two original datasets.

Table 6: Experiment 4.1, logistic regression model accuracy on holdout data

Model Accuracy
Output A 0.672
Output B 0.678
Synthetic 0.686

5.4.2 Experiment 4.2

Overall, there were 8 variables (AREAP, AGE, ETHGROUP, LTILL, MSTATUS, QUALNUM,
SEX, TENURE) — the datasets (n=25178) were split such that

e Dataset A had AREAP, ETHGROUP, QUALNUM, SEX, TENURE
e Dataset B had AGE, LTILL, MSTATUS, SEX, TENURE

TENURE and SEX were therefore the overlapping variables. For both dataset A and B a logistic
regression was the analytical output, with TENURE being used as the target variable and the
remaining variables as predictors.

Run 7 produced the optimal dataset, with the lowest fitness.
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Table 7 compares the logistic regression coefficients for output A to those obtained from the
synthetic data produced by run 7. compares the logistic regression coefficients for output B to
those obtained from the synthetic data produced by run 7
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Table 7: Experiment 4.2, regression coefficients for synthetic run 7 compared to the original
regression A coefficients

Feature

Constant

AREAP_ 58
AREAP_59
AREAP_60
AREAP_61
AREAP_62
AREAP_63

ETHGROUP_10 0.858

ETHGROUP_2
ETHGROUP_3
ETHGROUP_4
ETHGROUP_5
ETHGROUP_6
ETHGROUP_7
ETHGROUP_S8
ETHGROUP_g9
QUALNUM._ 1
QUALNUM_ 2
SEX 2

Feature

Constant
AGE
LTILL_2
MSTATUS_2
MSTATUS_3
MSTATUS 4
MSTATUS_5
SEX_2

Original Synthetic  Absolute
Coefficient Coefficient difference
-0.499 -0.404 0.095
-0.331 -0.319 0.012
-0.490 -0.478 0.012
0.250 0.266 0.016
-0.793 -0.787 0.007
0.008 0.020 0.012
0.109 0.123 0.014
0.860 0.003
0.648 0.654 0.007
0.769 0.776 0.007
1.271 1.278 0.007
-1.646 -1.639 0.007
-0.878 -0.875 0.003
-0.124 -0.117 0.008
0.634 0.635 0.001
0.491 0.494 0.003
-1.085 -1.071 0.014
-1.621 -1.613 0.007
0.043 0.063 0.020
MAE: 0.013
Original Synthetic = Absolute
Coefficient Coefficient difference
0.100 0.099 0.001
0.005 0.000 0.005
-0.708 -0.707 0.000
-0.956 -0.957 0.001
-0.466 -0.465 0.001
0.316 0.316 0.000
-0.174 -0.175 0.001
0.024 0.029 0.005
MAE: 0.002

The holdout data was put through the logistic regression models from output A and output B
to measure their accuracy in predicting TENURE. These models were generated using the
original data. A logistic regression model was then generated using the synthetic data and the
holdout data was put through this. The accuracy for all models is in Table 8. The model built
on the synthetic dataset outperforms models A and B, both of which were trained on the
original. The synthetic data was therefore able to predict better on a holdout dataset than
models trained on the two original datasets.
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Table 8: Experiment 4.2, logistic regression model accuracy on holdout data

Model

Output A
Output B
Synthetic

Accuracy
0.672
0.678
0.688

5.4.3 Experiment 4.3

Overall, there were 8 variables (AREAP, AGE, ETHGROUP, LTILL, MSTATUS, QUALNUM,
SEX, TENURE) — the datasets (n=25178) were split such that

e Dataset A had AREAP, ETHGROUP, QUALNUM, SEX, TENURE
e Dataset B had AGE, AREAP, LTILL, MSTATUS, SEX, TENURE

TENURE, AREAP and SEX were therefore the overlapping variables. For both dataset A and
B a logistic regression was the analytical output, with TENURE being used as the target

variable and the remaining variables as predictors.

Run 1 produced the optimal dataset, with the lowest fitness. Table 9 compares the logistic
regression coefficients for output A to those obtained from the synthetic data produced by run
1. Table 10 compares the logistic regression coefficients for output B to those obtained from

the synthetic data produced by run 1.

Table 9: Experiment 4.3, regression coefficients for synthetic run 1 compared to the original
regression A coefficients

Feature

Constant
AREAP_ 58
AREAP_ 59
AREAP_60
AREAP_61
AREAP_62
AREAP_63
ETHGROUP_10
ETHGROUP_2
ETHGROUP_3
ETHGROUP_4
ETHGROUP_5
ETHGROUP_6
ETHGROUP_7
ETHGROUP_S8
ETHGROUP_9
QUALNUM _1
QUALNUM_ 2
SEX 2

Original
Coefficient
-0.499
-0.331
-0.490
0.250
-0.793
0.008
0.109
0.858
0.648
0.769
1.271
-1.646
-0.878
-0.124
0.634
0.491
-1.085
-1.621
0.043

Synthetic
Coefficient
-0.354
-0.339
-0.444
0.287
-0.784
0.024
0.114
0.860
0.658
0.777
1.275

-1.637
-0.869
-0.114
0.643
0.505
-1.060
-1.608
0.100
MAE:

Absolute
difference

0.145
0.008
0.046
0.038
0.009
0.016
0.005
0.002
0.010
0.008
0.004
0.009
0.009
0.010
0.009
0.014
0.026
0.013

0.057
0.023
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Table 10: Experiment 4.3, regression coefficients for synthetic run 1 compared to the original
regression B coefficients

Feature Original Synthetic  Absolute
Coefficient Coefficient difference
Constant 0.154 0.152 0.002
AGE 0.005 0.002 0.003
AREAP_58 -0.345 -0.338 0.007
AREAP_59 -0.362 -0.370 0.008
AREAP_60 0.303 0.297 0.006
AREAP_61 -0.714 -0.711 0.003
AREAP_62 0.068 0.068 0.000
AREAP_63 0.088 0.089 0.001
LTILL 2 -0.691 -0.692 0.001
MSTATUS_2 -0.949 -0.950 0.001
MSTATUS_3 -0.426 -0.426 0.000
MSTATUS_4 o0.352 0.352 0.000
MSTATUS_5 -0.164 -0.165 0.002
SEX_ 2 0.025 0.028 0.002
MAE: 0.003

The holdout data was put through the logistic regression models from output A and output B
to measure their accuracy in predicting TENURE. These models were generated using the
original data. A logic regression model was then generated using the synthetic data and the
holdout data was put through this. The accuracy for all models is in Table 11. The model built
on the synthetic dataset outperforms models A and B, both of which were trained on the
original. The synthetic data was therefore able to predict better on a holdout dataset than
models trained on the two original datasets.

Table 11: Experiment 4.3, logistic regression model accuracy on holdout data

Model Accuracy
Output A 0.672
Output B 0.679
Synthetic 0.686

6. Conclusions and Future Work

This paper has demonstrated that analytically coherent synthetic datasets can be generated
using only cleared analytical outputs released by multiple independent data owners, without
any access to underlying microdata. By framing synthesis as a utility-driven optimisation
problem and jointly enforcing multiple analytical constraints through an evolutionary
algorithm, the proposed framework successfully produces a single, internally consistent
synthetic dataset that reproduces key analytical results across a range of distributed scenarios.

Across all experimental settings—from partial variable overlap to increasing numbers of
datasets and heterogeneous analytical outputs—the joint synthesis approach consistently
achieved low error in reproducing regression coefficients and summary tables. Importantly, it
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outperformed alternatives based on local datasets. The results show stable optimisation
behaviour, good scalability from two to four datasets, and robustness to differing patterns of
overlap in both samples and variables. Minor discrepancies were largely confined to sparse
subgroups and did not undermine the interpretability or pedagogical usefulness of the
synthetic data.

The findings reinforce the value of output-constrained synthesis as a practical and
governance-compatible approach for secure research environments. By relying exclusively on
already cleared outputs and non-disclosive metadata, the framework aligns naturally with
existing disclosure control processes and avoids introducing new disclosure risks. The
emphasis on teaching, evaluation, and methodological development further highlights the
suitability of this approach for contexts where analytical fidelity is prioritised over record-level
realism.

There are several avenues for future work. First, while this study focused primarily on
categorical variables and logistic regression outputs, the framework could be extended to
accommodate a broader range of analytical outputs, including continuous outcomes,
interaction terms, multilevel models, and time-series summaries. Exploring how competing
or partially inconsistent outputs affect convergence and solution quality would also be
valuable, particularly in more heterogeneous federated settings.

Second, the current implementation treats all analytical constraints with equal weight. Future
research could investigate adaptive or user-specified weighting schemes to reflect differing
priorities across outputs or data owners. Relatedly, incorporating explicit measures of
uncertainty in released outputs, such as confidence intervals, could allow synthesis targets to
be defined as acceptable ranges rather than point estimates.

Third, while EAs proved effective in this study, alternative optimisation strategies—such as
hybrid EA-gradient methods or constraint programming approaches—may improve
computational efficiency, especially as the dimensionality of the synthetic dataset grows.
Formal analysis of convergence properties and scalability limits would further strengthen the
methodological foundation.

Finally, future work should consider governance and usability aspects, including how this
approach could be embedded into secure research workflows and how synthetic datasets
generated in this way are perceived and used by instructors, students, and analysts. Evaluating
downstream teaching outcomes and exploratory analyses conducted on these synthetic
datasets would provide important evidence of real-world utility.

Overall, this work shows that federated-style synthetic data generation from distributed
analytical outputs is not only feasible but effective, offering a transparent, low-risk pathway to
producing analytically useful synthetic data in highly restricted access environments.
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Appendices
A1: Data dictionary for UK 1991 SARS Census data

Variable Description Label Values
name
AGE age
AREAP Individual SAR area 57 Birmingham
58 Coventry
59 Dudley
60 Sandwell
61 Solihull
62 Walsall
63 Wolverhampton
ETHGROUP Ethnic group 1 White
2 Black
Caribbean
3 Black African
4 Black other
5 Indian
6 Pakistani
7 Bangladeshi
8 Chinese
9 Other-Asian
10 Other-other
LTILL Limiting long-term illness 1 Yes
2 No
MSTATUS Marital status 1 Single
2 Married
3 Remarried
4 Divorced
5 Widowed
QUALNUM  No. of higher educational 0 None
qualification
1 One
2 Two
SEX Sex 1 Male
2 Female
TENURE Tenure of household space 0 Own house
(derived into binary
variable)

1 Rent house
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A2: Regression model reference categories

Variable

AREAP
ETHGROUP
LTILL
MSTATUS
QUALNUM
SEX

Reference
category
57

1
1
1
(0)
1

Label

Birmingham
White

Yes

Single

None

Male

Little et al (2026)



