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Abstract 
This paper examines the feasibility of generating coherent, combined synthetic datasets (for teaching, 

evaluation, and exploratory research) using only cleared analytical outputs from multiple independent 

data owners. Using an evolutionary algorithm (EA), analytical outputs such as regression coefficients 

and summary tables are used to guide the synthesis of data without direct access to any safeguarded 

microdata. A series of experiments explore scenarios with varying degrees of overlap in variables and 

samples, scaling from two to four datasets. Across all cases, the resulting synthetic datasets closely 

reproduce original analytical outputs and consistently outperform approaches that merge 

independently synthesised datasets. These findings demonstrate the robustness and scalability of a 

federated-style approach to synthetic data. 

1. Introduction 
Access to detailed microdata is increasingly constrained by legal, ethical, and governance 

requirements designed to protect confidentiality and prevent disclosure. While such controls 

are essential, they present challenges for teaching, methodological development, and 

exploratory research, where flexible access to realistic data structures is often required. 

Synthetic data has emerged as a promising solution, offering data that resemble real datasets 

in structure and statistical properties while avoiding direct disclosure of sensitive information. 

Most synthetic data generation approaches assume full access to the dataset during the 

synthesis process (see [1] for a review). However, in many real-world settings—particularly 

those involving multiple data owners or secure research environments—such access is not 

feasible. Instead, data custodians may only be able to release cleared analytical outputs, such 

as regression coefficients or summary tables. This raises a critical question: can analytically 

useful synthetic datasets be generated using only these limited outputs, without any access to 

the original microdata? 

This paper addresses that question by investigating a federated-style approach to synthetic 

data generation, in which analytical outputs from multiple independent datasets are combined 

to guide the synthesis of a single, coherent synthetic dataset. Using an evolutionary algorithm 

(EA) [2], the approach seeks to reproduce released analytical results while preserving 

consistency across outputs derived from different data sources. The work is situated within 

the context of teaching and methodological use cases, where analytical utility and 

interpretability are often more important than exact record-level fidelity. 

Through a series of experiments that vary the number of contributing datasets, the degree of 

overlap in variables, and the overlap in samples, this study evaluates the feasibility, 

robustness, and scalability of the proposed approach. Particular attention is paid to whether 

joint synthesis from combined outputs outperforms approaches that independently synthesise 

datasets (and subsequently attempt to merge them). 
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2. Literature Review 

2.1 Synthetic Data Generation 
Synthetic data generation has a long history in statistical disclosure control [1], where it has 

been used to reduce disclosure risk [3] while retaining analytical utility [4]. Early approaches 

focused on parametric modelling and multiple imputation frameworks [5,6], generating 

synthetic records from fitted statistical models [7]. More recent developments have 

incorporated machine learning techniques, including decision trees [8], Bayesian networks 

[9], and deep generative models such as Generative Adversarial Networks (GANs) [10,11]. 

While these methods can produce realistic data, they typically require full access to the original 

dataset during training. This assumption limits their applicability in settings where data 

cannot be pooled or where only aggregate information can be released. Moreover, high-fidelity 

generative models may introduce new disclosure risks if not carefully controlled, particularly 

when overfitting occurs [12]. 

2.2 Utility-Driven and Output-Constrained Synthesis 
An alternative strand of research emphasises utility-driven synthesis, where synthetic data are 

explicitly optimised to reproduce specific analytical results rather than the full joint 

distribution of the data [13, 14]. In this framework, analytical outputs—such as regression 

coefficients or contingency tables—serve as constraints or targets for the synthesis process. 

EAs and other optimisation-based methods have been shown to be effective in this context, 

particularly when the desired outputs are well defined. 

Output-constrained synthesis aligns closely with the needs of Trusted Research Environments 

(TREs), where cleared outputs are routinely produced having been scrutinised for disclosure 

risk. By limiting the information used in synthesis to already approved outputs, this approach 

offers a transparent and governance-friendly pathway to synthetic data creation. However, our 

existing work considers only single datasets and does not address the challenges of combining 

outputs from multiple sources. 

2.3 Federated and Distributed Data Contexts 
Federated analysis [15] and learning [16, 17] have gained prominence as mechanisms for 

extracting value from distributed data without centralising sensitive information. In such 

settings, models or summary statistics are shared rather than raw data. While federated 

learning focuses on training shared predictive models, less attention has been paid to the 

generation of shared synthetic datasets from federated outputs. Although our recent review 

[18] indicates growing interest. 

The generation of combined synthetic data from multiple independent outputs introduces 

additional challenges, including ensuring coherence across analyses, resolving differences in 

sample composition, and managing partial overlap in variables. Naïvely combining synthetic 

datasets generated independently from each source does not guarantee analytical consistency, 

particularly when relationships span datasets. 

2.4 Contribution of This Paper 
This paper contributes to the literature by demonstrating that coherent synthetic datasets can 

be generated directly from combined analytical outputs released by multiple data owners. By 
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using an EA to jointly satisfy multiple analytical constraints, the approach avoids the pitfalls 

of post hoc dataset merging and scales to scenarios involving increasing numbers of datasets. 

The focus on teaching and methodological use cases positions this work as a practical 

complement to existing synthetic data research, offering a low-risk, transparent, and 

governance-compatible method for producing analytically faithful synthetic data in restricted 

access environments. 

3. Methodological Framework 
This section describes the methodological framework used to generate a single coherent 

synthetic dataset from analytical outputs released by multiple independent data owners. The 

framework is designed for settings in which direct access to microdata is not possible and only 

cleared analytical outputs and limited metadata are available. Released outputs are treated as 

explicit utility constraints, and an EA is used to jointly satisfy these constraints during data 

synthesis. 

3.1 Problem Setting and Assumptions 
We consider a setting in which multiple data owners each hold a dataset that cannot be shared 

or pooled due to governance, confidentiality, or legal restrictions. Let there be 𝐾 independent 

data owners, each holding a dataset 

𝐷𝑘 = {𝐱𝑘1 , 𝐱𝑘2 , … , 𝐱𝑘𝑛𝑘
}, 𝑘 = 1, … , 𝐾, 

 

where each 𝐱𝑘𝑖  denotes an individual record represented as a vector of variable values, and the 

microdata 𝐷𝑘 are not accessible outside the owner’s secure environment. 

Each data owner releases a set of cleared analytical outputs 

𝒪𝑘 = {𝑜𝑘1, … , 𝑜𝑘𝑚𝑘
}, 

 

derived from known analytical procedures applied to 𝐷𝑘. These outputs may be based on 

overlapping or non-overlapping variable sets, and the underlying datasets may differ in 

sample composition. 

The objective is to generate a single synthetic dataset 

𝐷̃ = {𝐱̃1 , … , 𝐱̃𝑛̃}, 

 

such that applying the same analytical procedures to 𝐷̃ yields outputs that closely reproduce 

all released outputs 𝒪1, … , 𝒪𝐾 . The synthetic dataset is not intended to approximate the full 

joint distribution of any 𝐷𝑘, but rather to reproduce released analytical results to an acceptable 

level of error. 

Accordingly, the framework operates under the assumptions that: (i) no access to original 

microdata is available at any stage; (ii) only cleared analytical outputs and non-disclosive 

metadata are used; and (iii) the resulting synthetic dataset must be internally coherent and 

analytically interpretable. 
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3.2 Analytical Outputs as Utility Constraints 
Each released analytical output defines a set of utility constraints on the synthetic data. 

Applying the analytical function 𝑓𝑘𝑗(⋅) to the synthetic dataset yields 

𝑜̃𝑘𝑗 = 𝑓𝑘𝑗(𝐷̃). 

 

The synthesis task is therefore framed as a joint optimisation problem in which the synthetic 

dataset is adjusted so that 𝑜̃𝑘𝑗 ≈ 𝑜𝑘𝑗 for all outputs across all data owners. This utility-driven 

formulation avoids attempting to reconstruct the full data-generating process and instead 

focuses explicitly on reproducing the analyses that users are expected to perform. 

When multiple outputs are released—potentially from different datasets—the framework 

seeks a single synthetic dataset that jointly satisfies all constraints. This distinguishes the 

approach from methods that independently synthesise datasets and attempt to merge them 

post hoc. 

3.3 Metadata and Variable Representation 
In addition to analytical outputs, limited non-disclosive metadata are assumed to be 

available. Let ℳ𝑘 denote metadata for dataset 𝐷𝑘, including variable definitions, category 

labels, and marginal proportions. 

To ensure a consistent representation, combined metadata ℳ∗ are constructed. For 

categorical variables, category proportions are averaged across datasets: 

𝑝𝑐
∗ =

1

𝐾
∑ 𝑝𝑘𝑐

𝐾

𝑘=1

  , 

 

where 𝑝𝑘𝑐 is the proportion of category 𝑐 in dataset 𝐷𝑘. 

The combined metadata constrain the feasible space of synthetic datasets and ensure realistic 

structure, while introducing no additional disclosure risk. 

3.4 Evolutionary Algorithm for Joint Synthesis 
An EA is used to search for a synthetic dataset that satisfies all analytical constraints. Each 

candidate solution represents a complete synthetic dataset 𝐷̃(𝑔,𝑖), where 𝑔 indexes generations 

and 𝑖 indexes individuals within a generation. 

For each candidate dataset, a fitness function is defined as: 

ℒ(𝐷̃) = ∑

𝐾

𝑘=1

∑

𝑚𝑘

𝑗=1

𝑤𝑘𝑗  ℓ (𝑜𝑘𝑗, 𝑜̃𝑘𝑗), 

 

where ℓ(⋅,⋅) is the loss function and 𝑤𝑘𝑗  are optional weights. 

The EA proceeds via initialisation from ℳ∗, evaluation, selection, crossover, and mutation. A 

stepped mutation schedule is used to encourage early exploration and later convergence. The 
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stepped mutation schedule divides the mutation rate by three at regular intervals and in 

preliminary experiments was more effective than a fixed mutation rate. This optimisation-

based approach is well suited to handling multiple, potentially competing analytical 

constraints. 

3.5 Evaluation Metrics 
During optimisation, mean squared error (MSE) is used as the fitness measure: 

MSE =
1

∣ 𝒪 ∣
∑(𝑜𝑘𝑗 − 𝑜̃𝑘𝑗)2 

𝑘,𝑗

. 

 

For reporting and interpretation, mean absolute error (MAE) is used: 

MAE =
1

∣ 𝒪 ∣
∑ ∣ 𝑜𝑘𝑗 − 𝑜̃𝑘𝑗 ∣

𝑘,𝑗

. 

 

Together, these metrics provide a clear assessment of optimisation performance and analytical 

fidelity across experiments. 

4. Data and Experimental Design 
This section describes the data used in the study and the experimental design employed to 

evaluate the proposed joint synthesis framework. The experiments are designed to assess 

whether analytically coherent synthetic datasets can be generated from distributed analytical 

outputs, and how performance varies with the number of contributing datasets and the degree 

of overlap in samples and variables. 

4.1 Data Description 
The experiments are based on a set of related datasets sharing a common variable structure 

but differing in sample composition. All variables are categorical, reflecting typical data 

released for teaching and methodological purposes in secure environments. The outcome 

variable is binary, and covariates include a set of categorical predictors commonly used in 

applied regression analysis. 

The original datasets are not accessed directly during synthesis. Instead, all experiments rely 

exclusively on cleared analytical outputs and non-disclosive metadata derived from these 

datasets. Metadata specify variable definitions, category labels, and marginal category 

proportions. No record-level information or joint distributions are used at any stage. 

To support joint synthesis, combined metadata are constructed as described in Section 3.3, 

ensuring that all candidate synthetic datasets share a common variable representation. 

For simplicity we are using one dataset (a subset of the 1991 SARS UK Census dataset [19]) 

and partitioning that up to represent the different datasets. 

The overall dataset, the 1991 SARS UK Census dataset was subsetted on seven areas in the 

West Midlands region (using the AREAP variable) and used eight variables (AREAP, AGE, 

ETHGROUP, LTILL, MSTATUS, QUALNUM, SEX, TENURE). TENURE (housing tenure) 



SDIG Working paper #002  Little et al (2026) 

 

was used as the target variable for regression models, and this was converted to binary 

(individual lives in an owned or rented house).  There were 50357 records in the dataset, after 

removing those with missing values for TENURE. Appendix A1 contains a data dictionary, and 

Appendix A2 details the reference levels for the regression models. 

4.2 Experimental Scenarios 
A sequence of experimental scenarios is constructed to examine how synthesis performance 

changes as the number and structure of contributing datasets vary. The scenarios are ordered 

to progressively increase complexity. 

• Experiment 1: Two datasets with different samples/rows and the same variables   

• Experiment 2: Three datasets with different samples/rows and the same variables   

• Experiment 3: Four datasets with different samples/rows and the same variables  

• Experiment 4: The data is first split into an original and holdout dataset, then from the 

original two datasets are created each with the same samples/rows but different 

variables (with the degree of overlap between outputs tested) 

Each scenario is evaluated using the same synthesis framework and evaluation metrics, 

allowing direct comparison across experiments. 

4.3 Synthetic Data Generation Procedure 
For all experiments the EA was initialised using a population (size = 32) of synthetic datasets 

(candidates) derived from the uniform distribution of the original (training) data. The fitness 

of these datasets (candidates) was measured by performing the same logistic regression (using 

the same data pre-processing steps as performed on the original data) and comparing the 

resulting regression coefficients to the original coefficients. The fitness was calculated at each 

generation. Fitness was calculated as the MSE between synthetic and original coefficients. The 

fitness score should tend towards zero, i.e., a lower fitness score is optimal (a score of zero 

would indicate that the logistic regression model had been recreated identically). 

Exploratory experiments determined that crossover with stepped mutation produced the best 

solution (stepped mutation is where the mutation rate is divided by three every 250 

generations), and the EA ran for 2000 generations. Ten randomly initialised runs of the EA 

were performed. At each generation the MAE between the regression coefficients (for the 

optimal dataset) and the original was recorded. 

4.4 Analytical Outputs Used 
One class of analytical outputs are used to define utility constraints: 

• Regression outputs: Coefficients from logistic regression models fitted to each 

dataset, using a common model specification where applicable. 

This reflects analyses that are routinely permitted for release from secure research 

environments and are sufficient to capture both multivariate and marginal relationships 

relevant for teaching use cases. 
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Results are summarised using regression coefficient comparisons, tabular discrepancies, and 

graphical summaries. All figures and tables are interpreted in terms of analytical fidelity rather 

than record-level similarity, consistent with the intended use of the synthetic data. 

5. Experimental Results 
This section uses a mix of visuals and tables to present and analyse our results including: (i) 

EA convergence plots (Figure 1) and (ii) regression coefficient tables (e.g. Tables 4 and 5) to 

demonstrate stable optimization behaviour across all experiments consistently low mean 

absolute error (MAE) between original and synthetic outputs, respectively, (iii) comparative 

tables (e.g. Table 6) to highlight that direct synthesis from combined analytical outputs yields 

synthetic datasets closest to the original full dataset, and to further demonstrate that 

descriptive structure is well preserved, even when outputs are distributed across datasets with 

limited overlap.  

5.1 Experiment 1 
This scenario has two datasets each with different samples/rows and the same variables. For 

this we split our original dataset into two (on the rows), with dataset A having 25178 rows and 

dataset B having 25179 rows. Each have the same eight variables (AREAP, AGE, ETHGROUP, 

LTILL, MSTATUS, QUALNUM, SEX, TENURE). 

The analytical output for was a logistic regression performed on the TENURE variable, with 

all remaining variables used as predictors. The same logistic regression was performed on 

datasets A and B; it was also performed on the original dataset for comparison. Figure 1 plots 

the MSE fitness for each of the ten randomly initialised runs of the EA. 

 

Figure 1: Experiment 1, MSE fitness plot for ten randomly initialised runs 
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To compare the results, we consider the error for the original datasets A and B compared to 

the original, and then consider the synthetic data compared to the original. In Table 1Error! 

Reference source not found. we can see that the model trained on the synthetic data has 

lower error than each of the models trained on the individual original datasets. 

Table 1: Experiment 1, regression coefficients for synthetic data and original datasets A and B, 

compared to the original regression coefficients 

 Dataset A 

and B 

combined) 

Original 

Dataset A 

Original 

Dataset B 

Synthetic 

Features Coefficient Coefficient Coefficient Coefficient 

Constant 0.258 0.315 0.203 0.256 

AGE 0.002 0.001 0.003 0.006 

AREAP_58 -0.386 -0.411 -0.361 -0.385 

AREAP_59 -0.364 -0.399 -0.329 -0.362 

AREAP_60 0.299 0.309 0.290 0.299 

AREAP_61 -0.733 -0.762 -0.705 -0.732 

AREAP_62 0.053 0.021 0.083 0.054 

AREAP_63 0.134 0.120 0.147 0.134 

ETHGROUP_10 0.780 0.703 0.859 0.785 

ETHGROUP_2 0.490 0.373 0.600 0.493 

ETHGROUP_3 1.158 1.114 1.217 1.168 

ETHGROUP_4 0.914 1.174 0.641 0.894 

ETHGROUP_5 -1.658 -1.669 -1.648 -1.658 

ETHGROUP_6 -0.829 -0.846 -0.812 -0.828 

ETHGROUP_7 -0.029 -0.159 0.100 -0.023 

ETHGROUP_8 0.640 0.795 0.485 0.631 

ETHGROUP_9 0.369 0.283 0.446 0.369 

LTILL_2 -0.646 -0.680 -0.614 -0.645 

MSTATUS_2 -0.824 -0.731 -0.914 -0.827 

MSTATUS_3 -0.381 -0.351 -0.411 -0.383 

MSTATUS_4 0.396 0.482 0.312 0.393 

MSTATUS_5 -0.066 -0.028 -0.103 -0.067 

QUALNUM_1 -0.983 -0.939 -1.024 -0.984 

QUALNUM_2 -1.523 -1.667 -1.387 -1.520 

SEX_2 0.056 0.039 0.074 0.057 

MAE between 

dataset and 

whole original: 

 

0.0634 0.0629 0.0032 

 

5.2 Experiment 2  
This scenario has three datasets each with different samples/rows and the same variables. For 

this we split our original dataset into three (on the rows), with dataset A and B having 16786 

rows and dataset C having 16785 rows. Each have the same eight variables (AREAP, AGE, 

ETHGROUP, LTILL, MSTATUS, QUALNUM, SEX, TENURE). 
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The analytical output for was a logistic regression performed on the TENURE variable, with 

all remaining variables used as predictors. The same logistic regression was performed on 

datasets A, B and C, it was also performed on the original dataset for comparison. 

To compare the results, we consider the error for the original datasets A, B and C compared to 

the original, and then consider the synthetic data compared to the original. In Table 2Error! 

Reference source not found. we can see that the model trained on the synthetic data has 

lower error than each of the models trained on the individual original datasets. 

Table 2: Experiment 2, regression coefficients for synthetic data and original datasets A, B and C, 

compared to the original regression coefficients 

 Original 

(Dataset A, B, 

C combined) 

Original 

Dataset A 

Original 

Dataset B 

Original 

Dataset C 
Synthetic 

Features Coefficient Coefficient Coefficient Coefficient Coefficient 

Constant 0.258 0.191 0.265 0.322 0.262 

AGE 0.002 0.002 0.001 0.003 0.006 

AREAP_58 -0.386 -0.412 -0.414 -0.338 -0.387 

AREAP_59 -0.364 -0.379 -0.377 -0.337 -0.364 

AREAP_60 0.299 0.316 0.265 0.319 0.299 

AREAP_61 -0.733 -0.788 -0.684 -0.732 -0.732 

AREAP_62 0.053 0.038 0.084 0.039 0.055 

AREAP_63 0.134 0.184 0.136 0.085 0.134 

ETHGROUP_10 0.780 0.742 1.059 0.590 0.802 

ETHGROUP_2 0.490 0.561 0.507 0.395 0.485 

ETHGROUP_3 1.158 1.474 0.592 1.312 1.107 

ETHGROUP_4 0.914 1.178 0.758 0.831 0.911 

ETHGROUP_5 -1.658 -1.661 -1.730 -1.591 -1.662 

ETHGROUP_6 -0.829 -0.972 -0.754 -0.762 -0.824 

ETHGROUP_7 -0.029 0.027 -0.046 -0.071 -0.032 

ETHGROUP_8 0.640 0.550 0.661 0.708 0.643 

ETHGROUP_9 0.369 0.293 0.308 0.543 0.383 

LTILL_2 -0.646 -0.618 -0.628 -0.696 -0.648 

MSTATUS_2 -0.824 -0.794 -0.786 -0.892 -0.824 

MSTATUS_3 -0.381 -0.344 -0.427 -0.378 -0.385 

MSTATUS_4 0.396 0.385 0.393 0.412 0.397 

MSTATUS_5 -0.066 -0.075 0.006 -0.125 -0.063 

QUALNUM_1 -0.983 -0.927 -1.086 -0.937 -0.986 

QUALNUM_2 -1.523 -1.508 -1.549 -1.531 -1.530 

SEX_2 0.056 0.114 0.031 0.024 0.054 

MAE between 

outputs and 

whole original: 

 

0.0618 0.0704 0.0578 0.0058 

 

5.3 Experiment 3  
This scenario has four datasets each with different samples/rows and the same variables. For 

this we split our original dataset into four (on the rows), with dataset A 12590 rows and 
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datasets B, C and D having 12589 rows. Each have the same eight variables (AREAP, AGE, 

ETHGROUP, LTILL, MSTATUS, QUALNUM, SEX, TENURE). 

The analytical output for this was a logistic regression performed on the TENURE variable, 

with all remaining variables used as predictors. The same logistic regression was performed 

on datasets A, B, C and D, it was also performed on the original dataset for comparison. 

To compare the results, we consider the error for the original datasets A, B, C and D compared 

to the original, and then consider the synthetic data compared to the original. In Table 

3Error! Reference source not found. we can see that the model trained on the synthetic 

data has lower error than each of the models trained on the individual original datasets. 

Table 3: Experiment 3, regression coefficients for synthetic data and original datasets A, B, C and 
D, compared to the original regression coefficients 

 Coefficients 

Features Dataset A, 

B, C, D 

combined 

Original 

Dataset 

A 

Original 

Dataset B 

Original 

Dataset C 

Original 

Dataset C 
Synthetic 

Constant 0.258 0.217 0.212 0.354 0.250 0.262 

AGE 0.002 0.005 0.003 0.000 0.001 0.007 

AREAP_58 -0.386 -0.504 -0.434 -0.321 -0.281 -0.390 

AREAP_59 -0.364 -0.388 -0.340 -0.363 -0.363 -0.365 

AREAP_60 0.299 0.242 0.270 0.388 0.296 0.300 

AREAP_61 -0.733 -0.662 -0.789 -0.750 -0.739 -0.731 

AREAP_62 0.053 -0.020 -0.001 0.168 0.063 0.053 

AREAP_63 0.134 0.170 0.133 0.117 0.115 0.136 

ETHGROUP_10 0.780 0.428 0.720 0.842 1.103 0.750 

ETHGROUP_2 0.490 0.441 0.363 0.621 0.541 0.496 

ETHGROUP_3 1.158 0.916 1.808 0.333 1.584 1.090 

ETHGROUP_4 0.914 0.479 1.154 0.881 1.167 0.885 

ETHGROUP_5 -1.658 -1.452 -1.666 -1.757 -1.790 -1.656 

ETHGROUP_6 -0.829 -0.833 -0.827 -0.847 -0.809 -0.831 

ETHGROUP_7 -0.029 -0.113 0.169 -0.451 0.208 -0.078 

ETHGROUP_8 0.640 1.150 0.416 0.349 0.496 0.627 

ETHGROUP_9 0.369 0.461 0.074 0.389 0.660 0.399 

LTILL_2 -0.646 -0.598 -0.641 -0.719 -0.626 -0.646 

MSTATUS_2 -0.824 -0.932 -0.824 -0.740 -0.804 -0.827 

MSTATUS_3 -0.381 -0.502 -0.367 -0.423 -0.245 -0.396 

MSTATUS_4 0.396 0.292 0.507 0.516 0.273 0.398 

MSTATUS_5 -0.066 -0.274 -0.113 0.070 0.059 -0.072 

QUALNUM_1 -0.983 -0.885 -1.186 -0.918 -0.937 -0.971 

QUALNUM_2 -1.523 -1.495 -1.489 -1.491 -1.626 -1.520 

SEX_2 0.056 0.032 0.091 0.055 0.048 0.055 

MAE between 

outputs and 

whole original: 

 

0.1255 0.1005 0.1143 0.1045 0.0116 
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5.4 Experiment 4  
This is a variation where the data is first split into two datasets – a train (or original) and 

holdout. This was a fifty-fifty split, with train having 25178 records and the holdout having 

25179. The holdout is set aside and not used during the EA process but used to provide a 

holdout comparison at the end. The training dataset is then split into two datasets (each with 

the same samples/rows but different variables, and at least one variable overlapping both). 

Experiment 4.1 has one overlapping variable, 4.2 has two overlapping variables and 4.3 has 

three overlapping variables. The holdout will be used to evaluate the synthetic data by 

calculating how a logistic regression created from the synthetic data predicts on the unseen 

holdout data, compared to the logistic regressions created from datasets A and B separately. 

5.4.1 Experiment 4.1 

Overall, there were 8 variables (AREAP, AGE, ETHGROUP, LTILL, MSTATUS, QUALNUM, 

SEX, TENURE) – the datasets (n=25178) were split such that 

• Dataset A had AREAP, ETHGROUP, QUALNUM, SEX, TENURE 

• Dataset B had AGE, LTILL, MSTATUS, TENURE 

TENURE was therefore the overlapping variable. For both dataset A and B a logistic regression 

was the analytical output, with TENURE being used as the target variable and the remaining 

variables as predictors.  Run 2 produced the optimal dataset, with the lowest fitness. Table 4 

compares the logistic regression coefficients for output A to those obtained from the synthetic 

data produced by run 2. Table 5 compares the logistic regression coefficients for output B to 

those obtained from the synthetic data produced by run 2. 

Table 4: Experiment 4.1, regression coefficients for synthetic run 2 compared to the original 

regression A coefficients 

Feature Original Coefficient Synthetic Coefficient Absolute difference 

Constant -0.499 -0.398 0.101 

AREAP_58 -0.331 -0.318 0.012 

AREAP_59 -0.490 -0.479 0.011 

AREAP_60 0.250 0.264 0.014 

AREAP_61 -0.793 -0.786 0.008 

AREAP_62 0.008 0.016 0.007 

AREAP_63 0.109 0.120 0.010 

ETHGROUP_

10 0.858 
0.860 

0.003 

ETHGROUP_

2 0.648 
0.654 

0.006 

ETHGROUP_

3 0.769 
0.775 

0.006 

ETHGROUP_

4 1.271 
1.276 

0.005 

ETHGROUP_

5 -1.646 
-1.644 

0.002 

ETHGROUP_

6 -0.878 
-0.871 

0.007 

ETHGROUP_

7 -0.124 
-0.116 

0.008 
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ETHGROUP_

8 0.634 
0.637 

0.004 

ETHGROUP_

9 0.491 
0.494 

0.003 

QUALNUM_1 -1.085 -1.071 0.015 

QUALNUM_2 -1.621 -1.611 0.010 

SEX_2 0.043 0.094 0.051 

  MAE: 0.015 
Table 5: Experiment 4.1, regression coefficients for synthetic run 2 compared to the original 

regression B coefficients 

Feature Original 

Coefficient 

Synthetic 

Coefficient 

Absolute 

difference 

Constant 0.112 0.112 0.000 

AGE 0.005 0.001 0.004 

LTILL_2 -0.707 -0.709 0.001 

MSTATUS_2 -0.954 -0.953 0.001 

MSTATUS_3 -0.464 -0.463 0.001 

MSTATUS_4 0.320 0.320 0.000 

MSTATUS_5 -0.164 -0.164 0.000 

  MAE: 0.001 

 

The holdout data was put through the logistic regression models from output A and output B 

to measure their accuracy in predicting TENURE. These models were generated using the 

original data. A logistic regression model was then generated using the synthetic data and the 

holdout data put through this. The accuracy for all models is in Table 6. The model built on 

the synthetic dataset outperforms models A and B, both of which were trained on the original. 

The synthetic data was therefore able to predict better on a holdout dataset than models 

trained on the two original datasets.  

Table 6: Experiment 4.1, logistic regression model accuracy on holdout data 

Model Accuracy 

Output A 0.672 

Output B 0.678 

Synthetic 0.686 

 

5.4.2 Experiment 4.2 

Overall, there were 8 variables (AREAP, AGE, ETHGROUP, LTILL, MSTATUS, QUALNUM, 

SEX, TENURE) – the datasets (n=25178) were split such that 

• Dataset A had AREAP, ETHGROUP, QUALNUM, SEX, TENURE 

• Dataset B had AGE, LTILL, MSTATUS, SEX, TENURE 

TENURE and SEX were therefore the overlapping variables. For both dataset A and B a logistic 

regression was the analytical output, with TENURE being used as the target variable and the 

remaining variables as predictors. 

Run 7 produced the optimal dataset, with the lowest fitness.   
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Table 7 compares the logistic regression coefficients for output A to those obtained from the 

synthetic data produced by run 7. compares the logistic regression coefficients for output B to 

those obtained from the synthetic data produced by run 7 
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Table 7: Experiment 4.2, regression coefficients for synthetic run 7 compared to the original 

regression A coefficients 

Feature Original 

Coefficient 

Synthetic 

Coefficient 

Absolute 

difference 

Constant -0.499 -0.404 0.095 

AREAP_58 -0.331 -0.319 0.012 

AREAP_59 -0.490 -0.478 0.012 

AREAP_60 0.250 0.266 0.016 

AREAP_61 -0.793 -0.787 0.007 

AREAP_62 0.008 0.020 0.012 

AREAP_63 0.109 0.123 0.014 

ETHGROUP_10 0.858 0.860 0.003 

ETHGROUP_2 0.648 0.654 0.007 

ETHGROUP_3 0.769 0.776 0.007 

ETHGROUP_4 1.271 1.278 0.007 

ETHGROUP_5 -1.646 -1.639 0.007 

ETHGROUP_6 -0.878 -0.875 0.003 

ETHGROUP_7 -0.124 -0.117 0.008 

ETHGROUP_8 0.634 0.635 0.001 

ETHGROUP_9 0.491 0.494 0.003 

QUALNUM_1 -1.085 -1.071 0.014 

QUALNUM_2 -1.621 -1.613 0.007 

SEX_2 0.043 0.063 0.020 

  MAE: 0.013 

 

Feature Original 

Coefficient 

Synthetic 

Coefficient 

Absolute 

difference 

Constant 0.100 0.099 0.001 

AGE 0.005 0.000 0.005 

LTILL_2 -0.708 -0.707 0.000 

MSTATUS_2 -0.956 -0.957 0.001 

MSTATUS_3 -0.466 -0.465 0.001 

MSTATUS_4 0.316 0.316 0.000 

MSTATUS_5 -0.174 -0.175 0.001 

SEX_2 0.024 0.029 0.005 

  MAE: 0.002 

 

The holdout data was put through the logistic regression models from output A and output B 

to measure their accuracy in predicting TENURE. These models were generated using the 

original data. A logistic regression model was then generated using the synthetic data and the 

holdout data was put through this. The accuracy for all models is in Table 8. The model built 

on the synthetic dataset outperforms models A and B, both of which were trained on the 

original. The synthetic data was therefore able to predict better on a holdout dataset than 

models trained on the two original datasets.  
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Table 8: Experiment 4.2, logistic regression model accuracy on holdout data 

Model Accuracy 

Output A 0.672 

Output B 0.678 

Synthetic 0.688 

 

5.4.3 Experiment 4.3 

Overall, there were 8 variables (AREAP, AGE, ETHGROUP, LTILL, MSTATUS, QUALNUM, 

SEX, TENURE) – the datasets (n=25178) were split such that 

• Dataset A had AREAP, ETHGROUP, QUALNUM, SEX, TENURE 

• Dataset B had AGE, AREAP, LTILL, MSTATUS, SEX, TENURE 

TENURE, AREAP and SEX were therefore the overlapping variables. For both dataset A and 

B a logistic regression was the analytical output, with TENURE being used as the target 

variable and the remaining variables as predictors. 

Run 1 produced the optimal dataset, with the lowest fitness. Table 9 compares the logistic 

regression coefficients for output A to those obtained from the synthetic data produced by run 

1. Table 10 compares the logistic regression coefficients for output B to those obtained from 

the synthetic data produced by run 1. 

Table 9: Experiment 4.3, regression coefficients for synthetic run 1 compared to the original 

regression A coefficients 

Feature Original 

Coefficient 

Synthetic 

Coefficient 

Absolute 

difference 

Constant -0.499 -0.354 0.145 

AREAP_58 -0.331 -0.339 0.008 

AREAP_59 -0.490 -0.444 0.046 

AREAP_60 0.250 0.287 0.038 

AREAP_61 -0.793 -0.784 0.009 

AREAP_62 0.008 0.024 0.016 

AREAP_63 0.109 0.114 0.005 

ETHGROUP_10 0.858 0.860 0.002 

ETHGROUP_2 0.648 0.658 0.010 

ETHGROUP_3 0.769 0.777 0.008 

ETHGROUP_4 1.271 1.275 0.004 

ETHGROUP_5 -1.646 -1.637 0.009 

ETHGROUP_6 -0.878 -0.869 0.009 

ETHGROUP_7 -0.124 -0.114 0.010 

ETHGROUP_8 0.634 0.643 0.009 

ETHGROUP_9 0.491 0.505 0.014 

QUALNUM_1 -1.085 -1.060 0.026 

QUALNUM_2 -1.621 -1.608 0.013 

SEX_2 0.043 0.100 0.057 

  MAE: 0.023 
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Table 10: Experiment 4.3, regression coefficients for synthetic run 1 compared to the original 

regression B coefficients 

Feature Original 

Coefficient 

Synthetic 

Coefficient 

Absolute 

difference 

Constant 0.154 0.152 0.002 

AGE 0.005 0.002 0.003 

AREAP_58 -0.345 -0.338 0.007 

AREAP_59 -0.362 -0.370 0.008 

AREAP_60 0.303 0.297 0.006 

AREAP_61 -0.714 -0.711 0.003 

AREAP_62 0.068 0.068 0.000 

AREAP_63 0.088 0.089 0.001 

LTILL_2 -0.691 -0.692 0.001 

MSTATUS_2 -0.949 -0.950 0.001 

MSTATUS_3 -0.426 -0.426 0.000 

MSTATUS_4 0.352 0.352 0.000 

MSTATUS_5 -0.164 -0.165 0.002 

SEX_2 0.025 0.028 0.002 

  MAE: 0.003 

 

The holdout data was put through the logistic regression models from output A and output B 

to measure their accuracy in predicting TENURE. These models were generated using the 

original data. A logic regression model was then generated using the synthetic data and the 

holdout data was put through this. The accuracy for all models is in Table 11. The model built 

on the synthetic dataset outperforms models A and B, both of which were trained on the 

original. The synthetic data was therefore able to predict better on a holdout dataset than 

models trained on the two original datasets.  

Table 11: Experiment 4.3, logistic regression model accuracy on holdout data 

Model Accuracy 

Output A 0.672 

Output B 0.679 

Synthetic 0.686 

 

6. Conclusions and Future Work  
This paper has demonstrated that analytically coherent synthetic datasets can be generated 

using only cleared analytical outputs released by multiple independent data owners, without 

any access to underlying microdata. By framing synthesis as a utility-driven optimisation 

problem and jointly enforcing multiple analytical constraints through an evolutionary 

algorithm, the proposed framework successfully produces a single, internally consistent 

synthetic dataset that reproduces key analytical results across a range of distributed scenarios. 

Across all experimental settings—from partial variable overlap to increasing numbers of 

datasets and heterogeneous analytical outputs—the joint synthesis approach consistently 

achieved low error in reproducing regression coefficients and summary tables. Importantly, it 
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outperformed alternatives based on local datasets. The results show stable optimisation 

behaviour, good scalability from two to four datasets, and robustness to differing patterns of 

overlap in both samples and variables. Minor discrepancies were largely confined to sparse 

subgroups and did not undermine the interpretability or pedagogical usefulness of the 

synthetic data. 

The findings reinforce the value of output-constrained synthesis as a practical and 

governance-compatible approach for secure research environments. By relying exclusively on 

already cleared outputs and non-disclosive metadata, the framework aligns naturally with 

existing disclosure control processes and avoids introducing new disclosure risks. The 

emphasis on teaching, evaluation, and methodological development further highlights the 

suitability of this approach for contexts where analytical fidelity is prioritised over record-level 

realism. 

There are several avenues for future work. First, while this study focused primarily on 

categorical variables and logistic regression outputs, the framework could be extended to 

accommodate a broader range of analytical outputs, including continuous outcomes, 

interaction terms, multilevel models, and time-series summaries. Exploring how competing 

or partially inconsistent outputs affect convergence and solution quality would also be 

valuable, particularly in more heterogeneous federated settings. 

Second, the current implementation treats all analytical constraints with equal weight. Future 

research could investigate adaptive or user-specified weighting schemes to reflect differing 

priorities across outputs or data owners. Relatedly, incorporating explicit measures of 

uncertainty in released outputs, such as confidence intervals, could allow synthesis targets to 

be defined as acceptable ranges rather than point estimates. 

Third, while EAs proved effective in this study, alternative optimisation strategies—such as 

hybrid EA–gradient methods or constraint programming approaches—may improve 

computational efficiency, especially as the dimensionality of the synthetic dataset grows. 

Formal analysis of convergence properties and scalability limits would further strengthen the 

methodological foundation. 

Finally, future work should consider governance and usability aspects, including how this 

approach could be embedded into secure research workflows and how synthetic datasets 

generated in this way are perceived and used by instructors, students, and analysts. Evaluating 

downstream teaching outcomes and exploratory analyses conducted on these synthetic 

datasets would provide important evidence of real-world utility. 

Overall, this work shows that federated-style synthetic data generation from distributed 

analytical outputs is not only feasible but effective, offering a transparent, low-risk pathway to 

producing analytically useful synthetic data in highly restricted access environments. 
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Appendices 

A1: Data dictionary for UK 1991 SARS Census data 

Variable 

name 

Description Label Values 

AGE age   

AREAP Individual SAR area 57 Birmingham 

  58 Coventry 

  59 Dudley 

  60 Sandwell 

  61 Solihull 

  62 Walsall 

  63 Wolverhampton 

ETHGROUP Ethnic group 1 White 

  2 Black 

Caribbean 

  3 Black African 

  4 Black other 

  5 Indian 

  6 Pakistani 

  7 Bangladeshi 

  8 Chinese 

  9 Other-Asian 

  10 Other-other 

LTILL Limiting long-term illness 1 Yes 

  2 No 

MSTATUS Marital status 1 Single 

  2 Married 

  3 Remarried 

  4 Divorced 

  5 Widowed 

QUALNUM No. of higher educational 

qualification 

0 None 

  1 One 

  2 Two 

SEX Sex 1 Male 

  2 Female 

TENURE Tenure of household space 

(derived into binary 

variable) 

0 Own house 

  1 Rent house 
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A2: Regression model reference categories 

Variable  Reference 

category  

Label  

AREAP  57  Birmingham  

ETHGROUP  1  White  

LTILL  1  Yes  

MSTATUS  1  Single  

QUALNUM 0 None 

SEX  1  Male  

 

 


